期刊论文详细信息
Journal of Space Weather and Space Climate
Sudden transitions and grand variations in the solar dynamo, past and future
Silvia Duhau1  Cornelis De Jager2 
[1] Departamento de Física, Facultad de Ingenieria, Universidad de Buenos Aires,1428 Buenos Aires,Argentina;Royal Netherlands Institute for Sea Research,PO Box 59,1790 AB Den Burg,The Netherlands
关键词: poloidal field;    toroidal field;    active regions;    dynamo;    Sun;   
Others  :  800688
DOI  :  doi:10.1051/swsc/2012008
 received in 2012-02-21, accepted in 2012-06-11,  发布年份 2012
PDF
【 摘 要 】

The solar dynamo is the exotic dance of the sun’s two major magnetic field components, the poloidal and the toroidal, interacting in anti-phase. On the basis of new data on the geomagnetic aa index, we improve our previous forecast of the properties of the current Schwabe cycle #24. Its maximum will occur in 2013.5 and the maximum sunspot number Rmax will then be 62 ± 12, which is within the bounds of our earlier forecasts. The subsequent analysis, based on a phase diagram, which is a diagram showing the relation between maximum sunspot numbers and minimum geomagnetic aa index values leads to the conclusion that a new Grand Episode in solar activity has started in 2008. From the study of the natural oscillations in the sunspot number time series, as found by an analysis based on suitable wavelet base functions, we predict that this Grand Episode will be of the Regular Oscillations type, which is the kind of oscillations that also occurred between 1724 and 1924. Previous expectations of a Grand (Maunder-type) Minimum of solar activity cannot be supported. We stress the significance of the Hallstatt periodicity for determining the character of the forthcoming Grand Episodes. No Grand Minimum is expected to occur during the millennium that has just started.

【 授权许可】

   
© Owned by the authors, Published by EDP Sciences 2012

【 预 览 】
附件列表
Files Size Format View
20140707203015164.pdf 483KB PDF download
Fig. 10 37KB Image download
Fig. 9 17KB Image download
Fig. 8 43KB Image download
Fig. 7 21KB Image download
Fig. 6 24KB Image download
Fig. 5 30KB Image download
Fig. 4 31KB Image download
Fig. 3 24KB Image download
Fig. 2 22KB Image download
Fig. 1 26KB Image download
【 图 表 】

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

【 参考文献 】
  • [1]Charbonneau, P., J.Christensen-Dalsgaard, R.Hennig, R.M.Larden, J.Schou, M.J.Thompson, and S.Tomczyk, Helioseismic constraints on the structure of the solar tachocline, Astrophys. J., 527, 445, 1999. [NASA ADS]
  • [2]Charbonneau, P., Dynamo models of the solar cycle, Living Rev. Sol. Phys., 7, Available at: http://solarphysics.livingreviews.org/Articles/lrsp-2010-3, 1, 2010.
  • [3]Basy, S., and J.Schou, Does the tachocline shows solar cycle related changes?Sol. Phys., 192, 481, 2000.
  • [4]Brun, A.S., H.M.Antia, S.M.Chitre, and J.P.Zahn, Seismic tests for solar models with tachocline mixing, A&A, 391, 725, 2002. [NASA ADS]
  • [5]Cally, D.S., M.Dikpati, and P.A.Gilman, Clamshell and tipping instabilities in a two-dimensional magnetic hydrodynamic tachocline, Astrophys. J., 582, 1196, 2003. [NASA ADS]
  • [6]Cliverd, M.A., C.Clarke, H.Rishbeth, T.G.D.Clark, and T.Ulich, Solar activity levels in. Astron 2100, Astron. Geophys., 44, 5.20, 2003.
  • [7]Duhau, S, and Y.Ch. Chen, The sudden increase of solar and geomagnetic activity after 1923 as a manifestation of a non-linear solar dynamo, Geophys. Res. Lett., 29 (NO. 0), DOI: 10.1029/2001GL013953, 2002.
  • [8]Duhau, S, and C.De Jager, The solar dynamo and it phase transitions during the last millennium, Solar Phys, 250, 1, 2008.
  • [9]Duhau, S., and De Jager, The forthcoming Grand Minimum of solar activity, J. Cosmol., 8, 1983, 2010.
  • [10]De Jager, C., Solar forcing of climate. I Solar variability, Space Sci. Rev., 120, 197, 2005.
  • [11]De Jager, C., and S.Duhau, Forecasting the parameters of sunspot cycle 24 and beyond, J. Atmos. Sol. Terr. Phys., 71, 239, 2009.
  • [12]De Jager, C., and S.Duhau, The variable solar dynamo and the forecast of solar activity; effects on terrestrial surface temperature, in J.M., Cossia, ed., Proceedings of the global warming in the 21th century. NOVA science publishers, Hauppauge, NY, pp. 77–106, 2011.
  • [13]De Jager, C., S.Duhau, and B.van Geel, Quantifying and specifying the solar influence on terrestrial temperatures, J. Atmos. Sol. Terr. Phys., 72, 526, 2010.
  • [14]Fisher, C.H., Y.Fan, B.W.Longcope, H.G.Linton, and A.A.Pevtsov, The solar dynamo and emerging flux – (invited review), Sol. Phys., 192, 119, 2000. [NASA ADS]
  • [15]Hathaway, D.H., R.M.Wilson, and E.J.Reichmann, A synthesis of solar cycle predictions, J. Geophys. Res., 104, 22388, 1999. [NASA ADS]
  • [16]Hujeirat, A., and H.W.Yorke, On the MHD structure of the solar tachocline. Steady and dynamical solutions, New Astron., 3, 671, 1998.
  • [17]Kùker, M., G.Ruduger, and M.Schultz, Circulation dominated solar shell dynamo with positive alpha effect, A&A, 374, 301, 2001. [NASA ADS]
  • [18]Legrand, J.P., and P.A.Simon, A two component solar cycle, Sol. Phys., 121, 187, 1991.
  • [19]Layden, A. C., P. A.Fox, J. M.Howard, K. H.Dsarajedini, and S.Sofia, Dynamo-based scheme for forecasting the magnitude of solar activity cycles, Sol. Phys., 132, 140, 1991. [NASA ADS]
  • [20]Lockwood, M., D.Whiter, B.Hancock, R.Henwood, T.Ulich, H.J.Linthe, EClarke, and M.A.Clilverd, The long-term drift in geomagnetic activity: calibration of the aa index using data from a variety of magnetometer station, Available at: http://www.eiscat.rl.ac.uk/Members/mike/publications/pdfs/sub/241_Lockwood_aa_correct_S1a.pdf, 2006.
  • [21]Mayaud, P.N., Analysis of storm sudden commencements for the years 1868-1967, J. Geophys. Res., 80, 111, DOI: 10.1029/JA080i001p00111, 1975.
  • [22]Nagovitsyn, Y., To the description of long-term variations in the solar magnetic flux: the sunspot area index, Astron. Lett., 31(8), 557, Translated from Pis’ma v Astronomicheskiǐ Zhurnal, 31 (8), 622, 2005.
  • [23]Nagovitsyn, Yu. A., Solar and geomagnetic activity on a long time scale: reconstructions and possibilities for predictions, Astron. Lett., 32 (5), 344, Translated from Pis’ma v Astronomicheskiǐ Zhurnal, 32 (5), 382, 2006.
  • [24]Nevanlinna, H., and E.Kataja, An extension of the geomagnetic index series aa for two solar cycles (1844–1868), Geophys. Res. Lett., 20, 2703, 1993.
  • [25]Ohl, A.I., Forecast of sunspot maximum number of cycle 20, Solnice Danie, 9, 84, 1966.
  • [26]Ossendrijver, M., Understanding the solar dynamo, Astron. Astrophys. Rev., 11, 287, 2003. [NASA ADS]
  • [27]Russell, C.T., On the possibility of delivering interplanetary and solar parameters from geomagnetic records, Sol. Phys., 42, 259, 1975. [NASA ADS]
  • [28]Russell, C.T., and T.Mulligan, The 22-year variation of geomagnetic activity: Implications for the polar magnetic field of the sun, Geophys. Res. Lett., 22, 328, 1955.
  • [29]Schatten, K.H., P.H.Scherrer, L.Svalgaard, J.M.Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21, Geophys. Res. Lett., 5, 411, 1978. [NASA ADS]
  • [30]Schove, D.J., The sunspot cycle, 649 B.C. to A.D. 2000, J. Geophys. Res., 60, 127–156, 1955. [NASA ADS]
  • [31]Schove, J.D., Solar cycles at the spectrum of time since 200 B.C., Ann. New York Acad. Sci., 95, 107, 1961.
  • [32]Solanki, S.K., B.Inhester, and M.Schüssler, The solar magnetic field, Rep. Prog. Phys., 69, 563, DOI: 10.1088/0034-4885/69/3/R02, 2006. [NASA ADS]
  • [33]Steinhilber, F., J.A.Abreu, J.Beer, and K.G.McKracken, Interplanetary magnetic fields during the past 9300 years inferred from cosmogenic radionuclides, J. Geophys. Res., 115, A1, DOI: 10.1029/2009JA014193, 2010. [NASA ADS]
  • [34]Svalgaard, L, E. W.Cliver, and P.Le Sager, IHV, a new geomagnetic index, Adv. Space Sci., 34, 436–439, 2004.
  • [35]Tobias, S.M., The solar dynamo, Philos. Trans. R. Soc. London, Ser. A, 360, 2741, DOI: 10.1098/rsta.2002.1090, 2002.
  • [36]Usoskin, I.G., S.Solanki, M.Schüssler, K.Mursula., and K.Alanko, Millennium-scale sunspot number reconstruction; evidence for an unusually active sun since the 1940s, Phys. Rev. Lett., 91 (21), 211101-1, 2003. [NASA ADS][PubMed]
  • [37]Vaquero, J.M., M.C.Gallego, J.G.Usoskin, and G.A.Kovaltsov, Revisited sunspot data: a new scenario for the onset of the Maunder Minimum, Astrophys. J., 713, L24, 2010.
  • [38]Vennerstroem, S., Long-term rise in geomagnetic activity—A close connection between quiet days and storms, Geophys. Res. Lett., 27, 69, 2000.
  文献评价指标  
  下载次数:462次 浏览次数:113次