期刊论文详细信息
Journal of Space Weather and Space Climate
The magnitude and effects of extreme solar particle events
Alain Hilgers1  Hugh Evans1  Alessandra Menicucci1  Giovanni Santin1  Marc-Andre Chavy-Macdonald1  Piers Jiggens1 
[1] European Space Research and Technology Centre (ESTEC), Space Environment and Effects Section Keperlaan 1,2200AGNoordwijk,The Netherlands
关键词: extreme events;    Carrington event;    human spaceflight;    radiation;    SEP;   
Others  :  800617
DOI  :  doi:10.1051/swsc/2014017
 received in 2013-09-18, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

The solar energetic particle (SEP) radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE) on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm−2) as a function of particle energy (in MeV). This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads), non-ionising energy loss (MeV g−1), single event upsets (upsets/bit) and the dose in humans compared to established limits for stochastic (or cancer-causing) effects and tissue reactions (such as acute radiation sickness) in humans given in grey-equivalent and sieverts respectively.

【 授权许可】

   
© P. Jiggens et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707194757836.pdf 3022KB PDF download
Fig. 14. 74KB Image download
Fig. 13. 74KB Image download
Fig. 12. 75KB Image download
Fig. 11. 69KB Image download
Fig. 10. 84KB Image download
Fig. 9. 83KB Image download
Fig. 8. 57KB Image download
Fig. 7. 75KB Image download
Fig. 6. 78KB Image download
Fig. 5. 49KB Image download
Fig. 4. 122KB Image download
Fig. 3. 99KB Image download
Fig. 2. 95KB Image download
Fig. 1. 72KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Adams, J.H., Cosmic ray effects on microelectronics, part 4, Technical Report Report 5901, Naval Research Laboratory, 1986.
  • [2]Badhwar, G.D., and P.M. O’Neill, Galactic cosmic radiation model and its applications, Adv. Space Res., 17 (2), 7–17, 1996. [NASA ADS][PubMed]
  • [3]Carrington, R.C., Description of a singular appearance seen on the Sun on September 1, 1859, Monthly Notices Royal Astronomical Society, 20, 13–15, 1860.
  • [4]Chavy-Macdonald, M.-A., A. Menicucci, G. Santin, H. Evans, P.T.A. Jiggens, P. Nieminen, and S. Hovland, High-accuracy simulations of the ISS radiation environment and applications to interplanetary manned missions, IEEE Trans. Nucl. Sci., 60 (4), 2427–2434, 2013.
  • [5]Clauer, R.C., and G. Siscoe, The great historical geomagnetic storm of 1859: a modern look, Adv. Space Res., 38, 117–118, 2006.
  • [6]Cliver, E.W., and W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity, Journal of Space Weather and Space Climate, 3 (A31), 121–124, 2013.
  • [7]Cucinotta, F.A., M.-H.Y. Kim, and L.J. Chappell, NASA/TP-2013–217375: Space radiation cancer risk projections and uncertainties 2012. In: Technical report, National Aeronautics and Space Administration, 2013.
  • [8]Dietze, G., D.T. Bartlett, D.A. Cool, F.A. Cucinotta, X. Jia, I.R. McAulay, M. Pelliccioni, V. Petrov, G. Reitz, and T. Sato, Annals of the ICRP: Assessment of radiation exposure of astronauts in space, The International Commission on Radiological Protection, 42 (4), 1–339, 2013.
  • [9]Dorman, L.I., L.I. Pustilnik, A. Sternlieb, I.G. Zukerman, A.V. Belov, E.A. Eroshenko, V.G. Yanke, H. Mavromichalaki, C. Sarlanis, G. Souvatzoglou, S. Tatsis, N. Iucci, G. Villoresi, Y. Fedorov, B.A. Shakhov, and M. Murat, Monitoring and forecasting of great solar proton events using the neutron monitor network in real time, IEEE Transactions on Plasma Science, 32 (4), 1478–1488, 2004.
  • [10]Durante, M., and F.A. Cucinotta, Physical basis of radiation protection in space travel, Rev. Mod. Phys., 83 (4), 1245–1281, 2011.
  • [11]Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and Russell A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections, J. Geophys. Res., 109 (A12105), 1–18, 2004.
  • [12]ISO 15390, Space Environment (natural and artificial) – Galactic Cosmic Ray model, 2004
  • [13]Jiggens, P.T.A., and S.B. Gabriel, Time distributions of solar energetic particle events: Are SEPEs really random? J. Geophys. Res., 114 (A10), A10105, 2009.
  • [14]Jiggens, P.T.A., S.B. Gabriel, D. Heynderickx, N. Crosby, A. Glover, and A. Hilgers, ESA SEPEM project: peak flux and fluence model, IEEE Trans. Nucl. Sci., 59 (4), 1066–1077, 2012.
  • [15]Jun, I., M.A. Xapsos, S.R. Messenger, E.A. Burke, R.J. Walkter, and T. Jordan, Nonionizing energy loss (NIEL) for device applications, IEEE Trans. Nucl. Sci., 50 (6), 1924–1928, 2003.
  • [16]Kahler, S.W., The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra, J. Geophys. Res., 106, 20947–20955, 2001.
  • [17]Kahler, S.W., Energetic particle acceleration by coronal mass ejections, Adv. Space Res., 32 (12), 2587–2596, 2003.
  • [18]Kim, M.-H.Y., K.A. George, and F.A. Cucinotta, Evaluation of skin cancer risk for lunar and mars missions, Adv. Space Res., 37, 1798–1803, 2006.
  • [19]King, J.H., Solar proton fluences for 1977–1983 space missions, J. Spacecraft Rockets, 11 (6), 401–408, 1974.
  • [20]Lario, D., M.B. Kallenrode, R.B. Decker, E.C. Roelof, S.M. Krimigis, A. Angels, and S. Blai, Radial and longitudinal dependences of solar 4–13 Mev and 27–37 Mev proton peak intensities and fluences: helios and imp-8 observations, Astrophys. J., 653, 1531–1544, 2006.
  • [21]Lei, F., P.R. Truscott, C.S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly, MULASSIS: a Geant4-based multilayered shielding simulation tool, IEEE Trans. Nucl. Sci., 49 (6), 2788–2793, 2002.
  • [22]McCracken, K.G., G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, and M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1 Identification in polar ice 1561–1950, J. Geophys. Res. – Space Phys., 106 (A10), 21585–21598, 2001. [NASA ADS]
  • [23]Mewaldt, R.A., C.M.S. Cohen, A.W. Labrador, R.A. Leske, G.M. Mason, M.I. Desai, M.D. Looper, J.E. Mazur, R.S. Selesnick, and D.K. Haggerty, Proton, helium, and electron spectra during the large solar particle events of October–November 2003, J. Geophys. Res., 110, A09S18, 2005.
  • [24]Neal, J.S., T.F. Nichols, and L.W. Townsend, Importance of predicting the dose temporal profile for large solar energetic particle events, Space Weather, 6 (1), S09004, 2008.
  • [25]Nymmik, R.A., The lag of galactic cosmic ray modulation: conformity to general regularities and influence on particle energy spectra, Adv. Space Res., 26 (11), 1875–1878, 1996.
  • [26]Nymmik, R.A., Improved environment radiation models, Adv. Space Res., 40, 313–320, 2007.
  • [27]Nymmik, R.A., M.I. Panasyuk, and A.A. Suslov, Galactic cosmic ray flux simulation and prediction, Adv. Space Res., 17 (2), 19–30, 1996.
  • [28]Oh, S.Y., J.W. Bieber, J. Clem, P. Evenson, R. Pyle, Y. Yi, and Y.-K. Kim, South pole neutron monitor forecasting of solar proton radiation intensity, Space Weather, 10, S05004, 2012.
  • [29]O’Neill, P.M., Badhwar-O’Neill galactic cosmic ray model update based on advanced composition explorer (ace) energy spectra from 1997 to present, Adv. Space Res., 37, 1727–1733, 2006. [NASA ADS]
  • [30]O’Neill, P.M., Badhwar-O’Neill 2010 galactic cosmic ray flux model – revised, IEEE Trans. Nucl. Sci., 57, 3148–3153, 2010.
  • [31]Petersen, E.L., The SEU figure of merit and proton upset rate calculations, IEEE Trans. Nucl. Sci., 45 (6), 2550–2562, 1998.
  • [32]Rosenqvist, L., and A. Hilgers, Sensitivity of a statistical solar proton fluence model to the size of the event data set, Geophys. Res. Lett., 30 (16), 1–4, 2003.
  • [33]Santin, G., V. Ivanchenko, E. Evans, P. Nieminen, and E. Daly, GRAS: a general-purpose 3-D modular simulation tool for space environment effects analysis, IEEE Trans. Nucl. Sci., 52 (6), 2294–2299, 2005.
  • [34]Seltzer, S.M., Updated calculations for routine space-shielding radiation dose estimates: SHIELDOSE-2, NIST Publication, NISTIR 5477, 1994.
  • [35]Shea, M.A., and D.F. Smart, A summary of solar proton events, Solar Phys., 127, 297–320, 1990.
  • [36]Siscoe, G., N.U. Crooker, and C.R. Clauer, Dst of the Carrington storm of 1859, Adv. Space Res., 38, 173–179, 2006.
  • [37]Smart, D.F., M.A. Shea, and K.G. McCracken, The Carrington event: possible solar proton intensitytime profile, Adv. Space Res., 38, 215–225, 2006.
  • [38]Stapor, W.J., J.P. Meyers, J.B. Langworthy, and E.L. Petersen, Two parameter Bendel model calculations for predicting proton induced upset, IEEE Trans. Nucl. Sci., 37 (6), 1966–1973, 1990.
  • [39]Straube, U., T. Berger, G. Reitz, R. Facius, C. Fuglesang, T. Reiter, V. Damann, and M. Tognini, Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA medical operations, Acta Astronaut., 66 (7–8), 963–973, 2010.
  • [40]Technical Standard NASA-STD-3001, Nasa space flight human system standard volume 1: Crew health. Technical report, National Aeronautics and Space Administration, 2007.
  • [41]Townsend, L.W., E.N. Zapp, D.L. Stephen Jr., and J.L. Hoff, Carrington flare of 1959 624 as a prototypical worst-case solar energetic particle event, IEEE Trans. Nucl. Sci., 50 (6), 2307–2309, 2003.
  • [42]Tylka, A.J., and W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, 31st International Cosmic Ray Conference, Łódź, 2009.
  • [43]Tylka, A.J., J.H. Adams, P.R. Boberg, B. Brownstein, W.F. Dietrich, E.O. Flueckiger, E.L. Peterson, M.A. Shea, D.F. Smart, and E.C. Smith, Creme96: A revision of the cosmic ray effects on micro-electronics code, IEEE Trans. Nucl. Sci., 44 (6), 2150–2160, 1997.
  • [44]Wilson, J.W., F.A. Cucinotta, J.L. Shinn, L.C. Simonsen, R.R. Dubey, W.R. Jordan, T.D. Jones, C.K. Chang, and M.Y. Kim, Shielding from solar particle event exposures in deep space, Radiat. Meas., 30 (3), 361–382, 1999.
  • [45]Wilson, J.W., F.A. Cucinotta, and C.J. Zeitlin, Spacesuit radiation shield design methods, 36th International Conference on Environmental Systems (ICES), Norfolk, Virginia, US, 2006.
  • [46]Wolff, E.W., M. Bigler, M.A. Curran, J.E. Dibb, M.M. Frey, M.R. Legrand, and J.R. McConnell, The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, 2012. [NASA ADS]
  • [47]Wu, H., J.L. Huff, R. Casey, M.-H. Kim, and F.A. Cucinotta, Chapter 5: risk of acute radiation syndromes due to solar particle events. In: J.C., McPhee, and J.B. Charles (Eds.), Human Health and Performance Risks of Space Exploration Missions, US, NASA, Lyndon B. Johnson Space Center, pp. 171–190, 2009.
  • [48]Xapsos, M.A., G.P. Summers, J.L. Barth, E.G. Stassinopoulos, and E.A. Burke, Probability model for worst case solar proton event fluences, IEEE Trans. Nucl. Sci., 46 (6), 1481–1485, 1999.
  • [49]Xapsos, M.A., J.L. Barth, E.G. Stassinopoulos, S.R. Messenger, R.J. Walters, G.P. Summers, and E.A. Burke, Characterizing solar proton energy spectra for radiation effects applications, IEEE Trans. Nucl. Sci., 47 (6), 2218–2223, 2000.
  • [50]Xapsos, M.A., C. Stauffer, T. Jordan, J.L. Barth, and R.A. Mewaldt, Model for cumulative solar heavy ion energy and linear energy transfer spectra, IEEE Trans. Nucl. Sci., 54 (6), 1985–1989, 2007.
  文献评价指标  
  下载次数:215次 浏览次数:23次