Journal of Space Weather and Space Climate | |
Assessing the relationship between spectral solar irradiance and stratospheric ozone using Bayesian inference | |
and Joanna D. Haigh2  Jack S. Egerton2  Daniel J. Mortlock1  William T. Ball2  | |
[1] Department of Mathematics, Imperial College London,SW7 2AZ,UK;Physics Department, Blackett Laboratory, Imperial College London,SW7 2AZ,UK | |
关键词: spectral solar irradiance; ozone; stratosphere; | |
Others : 1075710 DOI : doi:10.1051/swsc/2014023 |
|
received in 2014-03-24, accepted in 2014-08-21, 发布年份 2014 | |
【 摘 要 】
We investigate the relationship between spectral solar irradiance (SSI) and ozone in the tropical upper stratosphere. We find that solar cycle (SC) changes in ozone can be well approximated by considering the ozone response to SSI changes in a small number of individual wavelength bands between 176 and 310 nm, operating independently of each other. Additionally, we find that the ozone varies approximately linearly with changes in the SSI. Using these facts, we present a Bayesian formalism for inferring SC SSI changes and uncertainties from measured SC ozone profiles. Bayesian inference is a powerful, mathematically self-consistent method of considering both the uncertainties of the data and additional external information to provide the best estimate of parameters being estimated. Using this method, we show that, given measurement uncertainties in both ozone and SSI datasets, it is not currently possible to distinguish between observed or modelled SSI datasets using available estimates of ozone change profiles, although this might be possible by the inclusion of other external constraints. Our methodology has the potential, using wider datasets, to provide better understanding of both variations in SSI and the atmospheric response.
【 授权许可】
© W.T. Ball et al., Published by EDP Sciences 2014
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20141113105854180.pdf | 504KB | download |
【 参考文献 】
- [1]Armitage-Caplan, C., J. Dunkley, H.K. Eriksen, and C. Dickinson, Large-scale polarized foreground component separation for Planck, Mon. Not. R. Astron. Soc., 418, 1498–1510, DOI: 10.1111/j.1365-2966.2011.19307.x, 2011.
- [2]Arnold, S.R., J. Methven, M.J. Evans, M.P. Chipperfield, A.C. Lewis, et al., Statistical inference of OH concentrations and air mass dilution rates from successive observations of nonmethane hydrocarbons in single air masses, J. Geophys. Res. [Atmos.], 112 (D11), D10S40, DOI: 10.1029/2006JD007594, 2007.
- [3]Austin, J., K. Tourpali, E. Rozanov, H. Akiyoshi, S. Bekki, et al., Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res. [Atmos.], 113 (D12), D11306, DOI: 10.1029/2007JD009391, 2008.
- [4]Ball, W., Observations and modelling of total and spectral solar irradiance, PhD Thesis, Imperial College London, 2012.
- [5]Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, and J.W. Harder, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model, A&A, 530, A71, DOI: 10.1051/0004-6361/201016189, 2011. [NASA ADS]
- [6]Ball, W.T., Y.C. Unruh, N.A. Krivova, S. Solanki, T. Wenzler, D.J. Mortlock, and A.H. Jaffe, Reconstruction of total solar irradiance 1974–2009, A&A, 541, A27, DOI: 10.1051/0004-6361/201118702, 2012. [NASA ADS]
- [7]Ball, W.T., N.A. Krivova, Y.C. Unruh, J.D. Haigh, and S.K. Solanki, A new SATIRE-S spectral solar irradiance reconstruction for solar cycles 21–23 and its implications for stratospheric ozone, Journal of Atmospheric Sciences, 2014.
- [8]Bekki, S., J.A. Pyle, W. Zhong, R. Toumi, J.D. Haigh, and D.M. Pyle, The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption, Geophys. Res. Lett., 23, 2669–2672, DOI: 10.1029/96GL02088, 1996.
- [9]Béland, S., J. Harder, and T. Woods, 10 years of degradation trends of the SORCE SIM instrument, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8862, DOI: 10.1117/12.2022867, 2013.
- [10]Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen, Inverse modeling of the global CO cycle: 1. Inversion of CO mixing ratios, J. Geophys. Res., 105, 1909–1927, DOI: 10.1029/1999JD900818, 2000.
- [11]Bishop, L., and W.J. Hill, Bayesian probability calculations for stratospheric ozone modifications, J. Geophys. Res., 89, 2589–2594, DOI: 10.1029/JD089iD02p02589, 1984.
- [12]Brasseur, G.P., and S. Solomon, Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, Springer Netherlands, Dordrecht, Editor: L.A., Mysak, 2005.
- [13]Cahalan, R.F., G. Wen, J.W. Harder, and P. Pilewskie, Temperature responses to spectral solar variability on decadal time scales, Geophys. Res. Lett., 37, L07705, DOI: 10.1029/2009GL041898, 2010.
- [14]Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, DOI: 10.1051/0004-6361/201015903, 2011.
- [15]Cox, R.T., Probability, frequency, and reasonable expectation, Am. J. Phys., 14, 1–13, 1946. [NASA ADS]
- [16]Deland, M.T., and R.P. Cebula, Solar UV variations during the decline of Cycle 23, J. Atmos. Sol. Terr. Phys., 77, 225–234, DOI: 10.1016/j.jastp.2012.01.007, 2012. [NASA ADS]
- [17]Ermolli, I., K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, et al., Recent variability of the solar spectral irradiance and its impact on climate modelling, Atmos. Chem. Phys., 13, 3945–3977, DOI: 10.5194/acp-13-3945-2013, 2013. [NASA ADS]
- [18]Fligge, M., S.K. Solanki, and Y.C. Unruh, Modelling irradiance variations from the surface distribution of the solar magnetic field, A&A, 353, 380–388, 2000.
- [19]Fontenla, J.M., E.H. Avrett, and R. Loeser, Energy balance in the solar transition region. III – Helium emission in hydrostatic, constant-abundance models with diffusion, Astrophys. J., 406, 319–345, DOI: 10.1086/172443, 1993. [NASA ADS]
- [20]Fröhlich, C., Evidence of a long-term trend in total solar irradiance, A&A, 501, L27–L30, DOI: 10.1051/0004-6361/200912318, 2009. [NASA ADS]
- [21]Haigh, J.D., A.R. Winning, R. Toumi, and J.W. Harder, An influence of solar spectral variations on radiative forcing of climate, Nature, 467, 696–699, 2010. [NASA ADS][PubMed]
- [22]Harder, J., G. Lawrence, J. Fontenla, G. Rottman, and T. Woods, The spectral irradiance monitor: scientific requirements, instrument design, and operation modes, Sol. Phys., 230, 141–167, DOI: 10.1007/s11207-005-5007-5, 2005. [NASA ADS]
- [23]Harder, J.W., J.M. Fontenla, P. Pilewskie, E.C. Richard, and T.N. Woods, Trends in solar spectral irradiance variability in the visible and infrared, Geophys. Res. Lett., 36, 7801, DOI: 10.1029/2008GL036797, 2009. [NASA ADS]
- [24]Harfoot, M.B.J., D.J. Beerling, B.H. Lomax, and J.A. Pyle, A two-dimensional atmospheric chemistry modeling investigation of Earth’s Phanerozoic O3 and near-surface ultraviolet radiation history, J. Geophys. Res. [Atmos.], 112, D07308, DOI: 10.1029/2006JD007372, 2007. [NASA ADS]
- [25]Harwood, R.S., and J.A. Pyle, A two-dimensional mean circulation model for the atmosphere below 80 km, Q. J. Roy. Meteor. Soc., 101, 723–747, DOI: 10.1002/qj.49710143003, 1975.
- [26]Ineson, S., A.A. Scaife, J.R. Knight, J.C. Manners, N.J. Dunstone, L.J. Gray, and J.D. Haigh, Solar forcing of winter climate variability in the Northern Hemisphere, Nat. Geosci., 4, 753–757, DOI: 10.1038/ngeo1282, 2011.
- [27]Jaynes, E.T., Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, UK, 2003.
- [28]Krivova, N.A., S.K. Solanki, M. Fligge, and Y.C. Unruh, Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? A&A, 399, L1–L4, DOI: 10.1051/0004-6361:20030029, 2003. [NASA ADS]
- [29]Kurucz, R., ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. Kurucz CD-ROM No. 13, vol. 13, Smithsonian Astrophysical Observatory, Cambridge, Mass, 1993.
- [30]Lay, R.R., K.A. Lee, J.R. Holden, J.E. Oswald, R.F. Jarnot, et al., On orbit commissioning of the Earth observing system microwave limb sounder (EOS MLS) on the Aura spacecraft. In: J.J., Butler, Editor, Earth Observing Systems X, vol. 5882 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 476–487, DOI: 10.1117/12.620146, 2005.
- [31]Lean, J., Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 27, 2425–2428, DOI: 10.1029/2000GL000043, 2000. [NASA ADS]
- [32]Lean, J., G. Rottman, J. Harder, and G. Kopp, SORCE contributions to new understanding of global change and solar variability, Sol. Phys., 230, 27–53, DOI: 10.1007/s11207-005-1527-2, 2005. [NASA ADS]
- [33]Lean, J.L., M.T. DeLand, T.C.K. Lee, F.W. Zwiers, G.C. Hegerl, X. Zhang, and M. Tsao, How does the sun’s spectrum vary? J. Climate, 25, 2555–2560, DOI: 10.1175/JCLI-D-11-00571.1, 2012. [NASA ADS]
- [34]Lee, T.C.K., F.W. Zwiers, G.C. Hegerl, X. Zhang, and M. Tsao, A Bayesian climate change detection and attribution assessment, J. Climate, 18, 2429–2440, DOI: 10.1175/JCLI3402.1, 2005.
- [35]Lockwood, M., Was UV spectral solar irradiance lower during the recent low sunspot minimum? J. Geophys. Res. [Atmos.], 116 (D15), D16103, DOI: 10.1029/2010JD014746, 2011.
- [36]McClintock, W.E., G.J. Rottman, and T.N. Woods, Solar-stellar irradiance comparison experiment II (Solstice II): instrument concept and design, Sol. Phys., 230, 225–258, DOI: 10.1007/s11207-005-7432-x, 2005. [NASA ADS]
- [37]McPeters, R.D., P.K. Bhartia, D. Haffner, G.J. Labow, and L. Flynn, The version 8.6 SBUV ozone data record: an overview, J. Geophys. Res. [Atmos.], 118, 8032–8039, DOI: 10.1002/jgrd.50597, 2013.
- [38]Meier, R.R., Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Sci. Rev., 58, 1–185, DOI: 10.1007/BF01206000, 1991.
- [39]Merkel, A.W., J.W. Harder, D.R. Marsh, A.K. Smith, J.M. Fontenla, and T.N. Woods, The impact of solar spectral irradiance variability on middle atmospheric ozone, Geophys. Res. Lett., 38, L13802, DOI: 10.1029/2011GL047561, 2011. [NASA ADS]
- [40]Pagaran, J., M. Weber, M.T. Deland, L.E. Floyd, and J.P. Burrows, Solar spectral irradiance variations in 240–1600 nm during the recent solar cycles 21–23, Sol. Phys., 272, 159–188, DOI: 10.1007/s11207-011-9808-4, 2011.
- [41]Rottman, G., The SORCE mission, Sol. Phys., 230, 7–25, DOI: 10.1007/s11207-005-8112-6, 2005. [NASA ADS]
- [42]Shapiro, A.V., E.V. Rozanov, A.I. Shapiro, T.A. Egorova, J. Harder, M. Weber, A.K. Smith, W. Schmutz, and T. Peter, The role of the solar irradiance variability in the evolution of the middle atmosphere during 2004–2009, J. Geophys. Res. [Atmos.], 118, 3781–3793, DOI: 10.1002/jgrd.50208, 2013. [NASA ADS]
- [43]Snow, M., W.E. McClintock, T.N. Woods, O.R. White, J.W. Harder, and G. Rottman, The Mg II index from SORCE, Sol. Phys., 230, 325–344, DOI: 10.1007/s11207-005-6879-0, 2005. [NASA ADS]
- [44]Solanki, S.K., and Y.C. Unruh, A model of the wavelength dependence of solar irradiance variations, A&A, 329, 747–753, 1998.
- [45]Soukharev, B.E., and L.L. Hood, Solar cycle variation of stratospheric ozone: multiple regression analysis of long-term satellite data sets and comparisons with models, J. Geophys. Res. [Atmos.], 111 (D10), D20314, DOI: 10.1029/2006JD007107, 2006.
- [46]Swartz, W.H., R.S. Stolarski, L.D. Oman, E.L. Fleming, and C.H. Jackman, Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937–5948, DOI: 10.5194/acp-12-5937-2012, 2012.
- [47]Unruh, Y.C., S.K. Solanki, and M. Fligge, The spectral dependence of facular contrast and solar irradiance variations, A&A, 345, 635–642, 1999.
- [48]Wang, S., K. Li, T. Pongetti, S. Sander, Y. Yung, et al., Midlatitude atmospheric OH response to the most recent 11-y solar cycle, Proc. Natl. Acad. Sci., 110, 1215–1220, DOI: 10.1073/pnas.1213389110, 2013.