期刊论文详细信息
Journal of Space Weather and Space Climate
Magnetic field sector structure and origins of solar wind streams in 2012
and Igor Veselovsky2  Vladimir Slemzin1  Yulia Shugay3 
[1] Lebedev Physical Institute, Russian Academy of Sciences,Moscow119991,Russia;Space Research Institute (IKI), Russian Academy of Sciences,Moscow117997,Russia;Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,Moscow119991,Russia
关键词: solar wind;    interplanetary magnetic field;    coronal hole;    sources of solar wind;    coronal magnetic field;    solar cycle;   
Others  :  1075713
DOI  :  doi:10.1051/swsc/2014021
 received in 2013-12-04, accepted in 2014-06-26,  发布年份 2014
PDF
【 摘 要 】

The origins of the solar wind and the interplanetary magnetic field sector structure in the beginning of the magnetic polarity reversal of 24th solar cycle were investigated using the Wilcox Solar Observatory magnetic field measurements and their products as well as the solar wind data from ACE and the SDO/AIA EUV images. The dominance of the quadrupole harmonics in the solar magnetic field in this period resulted in a four-sector structure of the interplanetary magnetic field. The dominating source of recurrent high-speed solar wind stream was a large trans-equatorial coronal hole of negative polarity evolving in the course of the polarity reversal process. The contribution of ICMEs to the high-speed solar wind did not exceed 17% of the total flux. The solar wind density flux averaged over the year amounted to 1 × 108 cm−2 s−1 which is considerably lower than the typical long-term value (2–4 × 108 cm−2 s−1). The slow-speed component of solar wind density flux constituted in average more than 68% of the total flux, the high-speed component was about 10%, reaching the maximum of 32% in some Carrington rotations.

【 授权许可】

   
© Y. Shugay et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20141113105902398.pdf 3173KB PDF download
【 参考文献 】
  • [1]Bilenko, I.A., Coronal holes and the solar polar field reversal, A&A, 396, 657–666, DOI: 10.1051/0004-6361:20021412, 2002.
  • [2]Del Zanna, G., Flows in active region loops observed by Hinode EIS, A&A, 481, L49–L52, DOI: 10.1051/0004-6361:20079087, 2008. [NASA ADS]
  • [3]Feldman, W.C., J.R. Asbridge, S.J. Bame, and J.T. Gosling, Long-term variations of selected solar wind properties: Imp 6, 7, and 8 results, J. Geophys. Res., 83 (A5), 2177–2189, 1978.
  • [4]Goldstein, B.E., M. Neugebauer, J.L. Phillips, S Bame, J.T. Gosling, D. McComas, Y.M. Wang, N.R. Sheeley, and S.T. Suess, ULYSSES plasma parameters: latitudinal, radial, and temporal variations, A&A, 316, 296–303, 1996.
  • [5]Harra, L.K, T. Sakao, C.H. Mandrini, H. Hara, S. Imada, P.R. Young, L. van Driel-Gesztelyi, and D. Baker, Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett., 676, L147–L150, DOI: 10.1086/587485, 2008. [NASA ADS]
  • [6]Hoeksema, J.T., J.M. Wilcox, and P.H. Scherrer, Structure of the heliospheric current sheet in the early portion of sunspot cycle 21, J. Geophys. Res., 87 (A12), 10331–10338, 1982.
  • [7]Hurlburt, N., M. Cheung, C. Schrijver, L. Chang, S. Freeland, et al., Heliophysics event knowledgebase for the Solar Dynamics Observatory (SDO) and beyond, Sol. Phys., 275, 67–78, DOI: 10.1007/s11207-010-9624-2, 2012. [NASA ADS]
  • [8]Kojima, M., K. Fujiki, T. Ohmi, M. Tokumaru, and A. Yokobe, Low-speed solar wind from the vicinity of solar active regions, J. Geophys. Res., 104 (A8), 16993–17004, DOI: 10.1029/1999JA900177, 1999. [NASA ADS]
  • [9]Krista, L., and P. Gallagher, Gallagher Automatic coronal hole detection using local intensity thresholding techniques, Sol. Phys., 256, 87–100, 2009. [NASA ADS]
  • [10]Liewer, P.C., J.R. Hall, M.D Jong, D.G. Socker, R.A. Howard, P.C. Crane, P. Reiser, N. Rich, and A. Vourlidas, Determination of three-dimensional structure of coronal streamers and relationship to the solar magnetic field, J. Geophys. Res., 106, 15903–15915, DOI: 10.1029/2000JA000110, 2001. [NASA ADS]
  • [11]Liewer, P.C., M. Neugebauer, and T. Zurbuchen, Characteristics of active-region sources of solar wind near solar maximum, Sol. Phys., 223, 209–229, DOI: 10.1007/s11207-004-1105-z, 2004. [NASA ADS]
  • [12]MacNeice, P., B. Elliott, and A. Acebal, Validation of community models: 3. Tracing field lines in heliospheric models, Space Weather, 9 (15), DOI: 10.1029/2011SW000665, 2011.
  • [13]McComas, D.J., S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, and J.W. Griffee, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 86, 563–612, DOI: 10.1023/A:1005040232597, 1998. [NASA ADS]
  • [14]McComas, D.J., R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, and R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Lett., 35, L18103, DOI: 10.1029/2008GL034896, 2008. [NASA ADS]
  • [15]Mogilevsky, E.I., V.N. Obridko, and N.S. Shilova, Large-scale magnetic field structures and coronal holes on the sun, Sol. Phys., 176, 107–121, 1997.
  • [16]Neugebauer, M., P.C. Liewer, E.J. Smith, R.M. Skoug, and T.H. Zurbuchen, Sources of the solar wind at solar activity maximum, J. Geophys. Res., 107 (A12), 1488, DOI: 10.1029/2001JA000306, 2002.
  • [17]Nolte, J.T., and E.C. Roelof, Large-scale structure of the interplanetary medium, Sol. Phys., 33, 241–257, DOI: 10.1007/BF00152395, 1973.
  • [18]Obridko, V.N., B.D. Shelting, I.M. Livshits, and A.B. Asgarov, Contrast of coronal holes and parameters of associated solar wind streams, Sol. Phys., 260, 191–206, DOI: 10.1007/s11207-009-9435-5, 2009. [NASA ADS]
  • [19]Obridko, V.N., and B.D. Shelting, Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle, Sol. Phys., 270, 297–310, DOI: 10.1007/s11207-011-9753-2, 2011.
  • [20]Owens, M.J., N.U. Crooker, and M. Lockwood, Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers, J. Geophys. Res., 118, 1868–1879, DOI:10.1002/jgra.50259, 2013.
  • [21]Sanderson, T.R., T. Appourchaux, J.T. Hoeksema, and K.L. Harvey, Observations of the sun’s magnetic field during the recent solar maximum, J. Geophys. Res., 108 (A1), 1035, DOI: 10.1029/2002JA009388, 2003.
  • [22]Sheeley, N.R., Y.-M. Wang, S.H. Hawley, G.E. Brueckner, K.P. Dere et al., Measurements of flow speeds in the corona between 2 and 30 Rsun, Astrophys. J., 484, 472–478, DOI: 10.1086/304338, 1997. [NASA ADS]
  • [23]Shelke, R.N., and M.C. Pande, Differential rotation of coronal holes, Sol. Phys., 95, 193–197, 1985. [NASA ADS]
  • [24]Shugay, Yu.S., I.S. Veselovsky, D.B. Seaton, and D. Berghmans, Hierarchical approach to forecasting recurrent solar wind streams, Solar Syst. Res., 45 (6), 546–556, DOI: 10.1134/S0038094611060086, 2011.
  • [25]Slemzin, V., L. Harra, A. Urnov, S. Kuzin, F. Goryaev, and D. Berghmans, Signatures of slow solar wind streams from active regions in the inner corona, Sol. Phys., 286, 157–184, DOI: 10.1007/s11207-012-0004-y, 2013.
  • [26]Smith, C.W., M.H. Acuna, L.F. Burlaga, J. L’Heureux, N.F. Ness, and J. Scheifele, The ACE magnetic field experiment, Space Sci. Rev., 86, 613–632, DOI: 10.1023/A:1005092216668, 1998. [NASA ADS]
  • [27]Svalgaard, L., and Y. Kamide, Asymmetric solar polar field reversal, Astrophys. J., 763 (23), DOI: 10.1088/0004-637X/763/1/23, 2013.
  • [28]Richardson, I.G., and H.V. Cane, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Sol. Phys., 264, 189–237, DOI: 10.1007/s11207-010-9568-6, 2010. [NASA ADS]
  • [29]Veselovsky, I.S., I.G. Persiantsev, and Y.S. Shugai, Forecast of the solar wind velocity and the interplanetary magnetic field radial component polarity at the phase of decay of solar cycle 23, Geomag. Aeron., 46 (6), 701–707, DOI: 10.1134/S001679320606003X, 2006.
  • [30]Vrsnak, B., M. Temmer, and A.M. Veronig, Coronal holes and solar wind high-speed streams: I. forecasting the solar wind parameters, Sol. Phys., 240, 315–330, DOI: 10.1007/s11207-007-0285-8, 2007. [NASA ADS]
  • [31]Wang, Y.-M., and N.R. Sheeley Jr, Footpoint switching and the evolution of coronal holes, Astrophys. J., 612, 1196–1205, DOI: 10.1086/422711, 2004. [NASA ADS]
  • [32]Wang, Y.-M., Coronal holes and open magnetic flux, Space Sci. Rev., 144, 383–399, DOI: 10.1007/s11214-008-9434-0, 2009.
  • [33]Wang, Y.-M., On the relative constancy of the solar wind mass flux at 1 AU, Astrophys. J. Lett., 715, L121, DOI: 10.1088/2041-8205/715/2/L121, 2010a. [NASA ADS]
  • [34]Wang, Y.-M., E. Robbrecht, A.P. Rouillard, N.R. Sheeley Jr., and A.F.R. Thernisien, Formation and evolution of coronal holes following the emergence of active regions, Astrophys. J., 715, 39, DOI: 10.1088/0004-637X/715/1/39, 2010b.
  • [35]Wang, Y.-M., P.R. Young, and K. Muglach, Evidence for two Separate heliospheric current sheets of cylindrical shape during Mid-2012, Astrophys. J., 780, 103, DOI: 10.1088/0004-637X/780/1/103, 2014. [NASA ADS]
  文献评价指标  
  下载次数:7次 浏览次数:12次