期刊论文详细信息
Parasite
Schistosoma mansoni experimental infection in Mus spretus (SPRET/EiJ strain) mice
and Antonio Muro2  Jesús Pérez-Losada3  Andrés Castellanos3  Purificación Galindo-Villardón1  Belén Vicente2  Luis Pérez del Villar2 
[1] Departamento de Estadística, Universidad de Salamanca,37008 Salamanca,Spain;Instituto de Investigaciones Biomédicas de Salamanca (IBSAL),Salamanca,Spain;Centro de Investigación del Cáncer, Universidad de Salamanca-CSIC,37008 Salamanca,Spain
关键词: Hematological phenotypes;    Immunological phenotypes;    Mus spretus;    Schistosoma mansoni infection;   
Others  :  808559
DOI  :  doi:10.1051/parasite/2013027
 received in 2013-06-09, accepted in 2013-08-14,  发布年份 2013
PDF
【 摘 要 】

Most Schistosoma mansoni experimental infections are developed in several inbred strains of Mus musculus as definitive host. In contrast, Mus spretus is unexplored in Schistosoma infection studies. Mus spretus provides a high variation of immunological phenotypes being an invaluable tool for genetic studies and gene mapping. The aim of this study is to characterize hematological and immunological responses against Schistosoma mansoni infection in Mus spretus (SPRET/EiJ strain) vs. Mus musculus (CD1 strain) mice. Nine weeks after cercarial exposure, animals were perfused and the parasite burden was assessed. The parasitological data suggests that SPRET/EiJ mice tolerate higher parasite loads compared to CD1 strain. In addition, hematological parameters measured in Mus spretus group showed a significant increase in granulocytes population in early stages of infection compared to the CD1 cohort. Meanwhile, CD1 presented higher levels of lymphocytes and IgG1 in the late stages of S. mansoni experimental infection.

【 授权许可】

   
© L. Pérez del Villar et al., published by EDP Sciences, 2013

【 预 览 】
附件列表
Files Size Format View
20140708171856931.pdf 396KB PDF download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Aref S, El Refaei MF, Sakrana M, El-Nemre H. 2004. Enhanced neutrophil apoptosis in neutropenic patients with hepatosplenic schistosomiasis: evidence of serum Fas ligand. Hematology, 9, 71–78. [PubMed]
  • [2]Campino S, Kwiatkowski D, Dessein A. 2006. Mendelian and complex genetics of susceptibility and resistance to parasitic infections. Seminars in Immunology, 18, 411–422. [PubMed]
  • [3]Cooke GS, Hill AV. 2001. Genetics of susceptibility to human infectious disease. Nature Reviews Genetics, 2, 967–977. [PubMed]
  • [4]Dejager L, Pinheiro I, Bogaert P, Huys L, Libert C. 2010. Role for neutrophils in host immune responses and genetic factors that modulate resistance to Salmonella enterica serovar typhimurium in the inbred mouse strain SPRET/EiJ. Infection and Immunity, 78, 3848–3860. [PubMed]
  • [5]Farah IO, Kariuki TM, King CL, Hau J. 2001. An overview of animal models in experimental schistosomiasis and refinements in the use of non-human primates. Lab Animal, 35, 205–212.
  • [6]Flint J, Valdar W, Shifman S, Mott R. 2005. Strategies for mapping and cloning quantitative trait genes in rodents. Nature Reviews Genetics, 6, 271–286. [PubMed]
  • [7]Gessner A, Mohrs K, Mohrs M. 2005. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. Journal of Immunology, 174, 1063–1072.
  • [8]Hirata M, Hara T, Kage M, Fukuma T, Sendo F. 2002. Neutropenia augments experimentally induced Schistosoma japonicum egg granuloma formation in CBA mice, but not in C57BL/6 mice. Parasite Immunology, 24, 479–488. [PubMed]
  • [9]Hochepied T, Schoonjans L, Staelens J, Kreemers V, Danloy S, Puimège L, Collen D, Van Roy F, Libert C. 2004. Breaking the species barrier: derivation of germline-competent embryonic stem cells from Mus spretus x C57BL/6 hybrids. Stem Cells, 22, 441–447.
  • [10]Mohrs K, Wakil AE, Killeen N, Locksley RM, Mohrs M. 2005. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity, 23, 419–429. [PubMed]
  • [11]Musser GG, Carleton MD. 2005. Superfamily Muroidea in Mammal species of the world: a taxonomic and geographic reference, Wilson Don E., Reeder Dee Ann M. Editors. The Johns Hopkins University Press: Baltimore. p. 894–1531.
  • [12]Nagase H, Mao JH, Balmain A. 1999. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 15032–15037. [PubMed]
  • [13]Pardo J, Carranza C, Turrientes MC, Pérez Arellano JL, López Vélez R, Ramajo V, Muro A. 2004. Utility of Schistosoma bovis adult worm antigens for diagnosis of human schistosomiasis by enzyme-linked immunosorbent assay and electroimmunotransfer blot techniques. Clinical and Diagnostic Laboratory Immunology, 11, 1165–1170. [PubMed]
  • [14]Quigley DA, To MD, Pérez-Losada J, Pelorosso FG, Mao JH, Nagase H, Ginzinger DG, Balmain A. 2009. Genetic architecture of mouse skin inflammation and tumour susceptibility. Nature, 458, 505–508. [PubMed]
  • [15]Rumbley CA, Sugaya H, Zekavat SA, El Refaei M, Perrin PJ, Phillips SM. 1999. Activated eosinophils are the major source of Th2-associated cytokines in the schistosome granuloma. Journal of Immunology, 162, 1003–1009.
  • [16]Rutitzky LI, Mirkin GA, Stadecker MJ. 2003. Apoptosis by neglect of CD4+ Th cells in granulomas: a novel effector mechanism involved in the control of egg-induced immunopathology in murine schistosomiasis. Journal of Immunology, 171, 1859–1867.
  • [17]Sarkar D. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer.
  • [18]Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671–675. [PubMed]
  • [19]Shariati F, Pérez-Arellano JL, Carranza C, López-Abán J, Vicente B, Arefi M, Muro A. 2011. Evaluation of the role of angiogenic factors in the pathogenesis of schistosomiasis. Experimental Parasitology, 128, 44–49. [PubMed]
  • [20]Siles-Lucas M, Uribe N, López-Abán J, Vicente B, Orfao A, Nogal-Ruiz JJ, Feliciano AS, Muro A. 2007. The Schistosoma bovis Sb14-3-3zeta recombinant protein cross-protects against Schistosoma mansoni in BALB/c mice. Vaccine, 25, 7217–7223. [PubMed]
  • [21]Smith PM, Shainheit MG, Bazzone LE, Rutitzky LI, Poltorak A, Stadecker MJ. 2009. Genetic control of severe egg-induced immunopathology and IL-17 production in murine schistosomiasis. Journal of Immunology, 183, 3317–3323.
  • [22]Staelens J, Puimège L, Mahieu T, Pynaert G, Hochepied T, Vandenabeele A, Grooten J, Kontoyiannis D, Van Roy F, Kollias G, Libert C. 2004. Response of TNF-hyporesponsive SPRET/EiJ mice in models of inflammatory disorders. Mammalian Genome, 15, 537–543.
  • [23]Stavitsky AB. 2004. Regulation of granulomatous inflammation in experimental models of schistosomiasis. Infection and Immunity, 72, 1–12. [PubMed]
  • [24]Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infectious Diseases, 6, 411–425.
  • [25]Stephan K, Smirnova I, Jacque B, Poltorak A. 2007. Genetic analysis of the innate immune responses in wild-derived inbred strains of mice. European Journal of Immunology, 37, 212–223. [PubMed]
  • [26]To MD, Perez-Losada J, Mao JH, Hsu J, Jacks T, Balmain A. 2006. A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genetics, 38, 926–930. [PubMed]
  • [27]Turcotte K, Loredo-Osti JC, Fortin P, Schurr E, Morgan K, Gros P. 2006. Complex genetic control of susceptibility to Mycobacterium bovis (Bacille Calmette-Guerin) infection in wild-derived Mus spretus mice. Genes and Immunity, 7, 684–687. [PubMed]
  • [28]Veyrunes F, Britton-Davidian J, Robinson TJ, Calvet E, Denys C, Chevret P. 2005. Molecular phylogeny of the African pygmy mice, subgenus Nannomys (Rodentia, Murinae, Mus): implications for chromosomal evolution. Molecular Phylogenetics and Evolution, 36, 358–369. [PubMed]
  文献评价指标  
  下载次数:0次 浏览次数:5次