期刊论文详细信息
ETRI Journal
Nonuniform Encoding and Hybrid Decoding Schemes for Equal Error Protection of Rateless Codes
关键词: rateless code;    BP-GE hybrid decoding;    Nonuniform selection;   
Others  :  1186293
DOI  :  10.4218/etrij.12.0112.0019
PDF
【 摘 要 】

Messages are generally selected with the same probability in the encoding scheme of rateless codes for equal error protection. In addition, a belief propagation (BP) decoding scheme is generally used because of the low computational complexity. However, the probability of recovering a new message by BP decoding is reduced if both the recovered and unrecovered messages are selected uniformly. Thus, more codeword symbols than expected are required for the perfect recovery of message symbols. Therefore, a new encoding scheme with a nonuniform selection of messages is proposed in this paper. In addition, a BP-Gaussian elimination hybrid decoding scheme that complements the drawback of the BP decoding scheme is proposed. The performances of the proposed schemes are analyzed and compared with those of the conventional schemes.

【 授权许可】

   

【 预 览 】
附件列表
Files Size Format View
20150520124127748.pdf 1181KB PDF download
【 参考文献 】
  • [1]B. Sklar, Digital Communications, Upper Saddler River, NJ: Prentice Hall PTR, 2001.
  • [2]R.C. Singleton, “Maximum Distance Q-nary Codes,” IEEE Trans. Inf. Theory, vol. 10, no. 2, Apr. 1964, pp. 116-118.
  • [3]M. Luby, “LT Codes,” Proc. 43rd Ann. IEEE Symp. Foundations Comput. Sci., Vancouver, BC, Canada, Nov. 2002, pp. 271-280.
  • [4]A. Shokrollahi, “Raptor Codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6, June 2006, pp. 2251-2567.
  • [5]E. Hyytia, T. Tirronen, and J. Vitamo, “Optimal Degree Distribution for LT Codes with Small Message Length,” Proc. IEEE INFOCOM, Anchorage, AK, USA, May 2007, pp. 2576-2580.
  • [6]N. Rahvard, N. Vellambi, and F. Fekri, “Rateless Codes with Unequal Error Protection Property,” IEEE Trans. Inf. Theory, vol. 53, no. 4, Apr. 2007, pp. 1521-1532.
  • [7]U.C. Kozat and S.A. Ramprashad, “Unequal Error Protection Rateless Codes for Scalable Information Delivery in Mobile Networks,” Proc. IEEE INFOCOM, Anchorage, AK, USA, May 2007, pp. 2316-2320.
  • [8]H.T. Lim and E.K. Joo, “Performance Improvement of Rateless Code by Nonuniform Selection of Messages in Encoding,” Proc. IEEE TENCON, Bali, Indonesia, Nov. 2011, pp. 1-4.
  • [9]D.J.C. Mackay, “Fountain Codes,” IEE Proc. Comm., vol. 152, 2005, pp. 1062-1068.
  • [10]S. Kim, K. Ko, and S. Chung, “Incremental Gaussian Elimination of Raptor Codes over BEC,” IEEE Commun. Lett., vol. 12, no. 4, Apr. 2008, pp. 307-309.
  • [11]X. Yuan and L. Ping, “On Systematic LT Codes,” IEEE Commun. Lett., vol. 12, no. 9, Sept. 2008, pp 681-683.
  • [12]D. Sejdinović et al., “Expanding Window Fountain Codes for Unequal Error Protection,” IEEE Trans. Commun., vol. 57, no. 9, Sept. 2009, pp. 2510-2516.
  • [13]V.G. Subramanian and D.J. Leith, “On a Class of Optimal Codes,” Proc. 46th Ann. Allerton Conf. Commun. Control Computing, Urbana, IL, USA, Sept. 2008, pp. 418-425.
  • [14]K. Pentikousis et al., “Active Goodput Measurements from a Public 3G/UMTS Network,” IEEE Commun. Lett., vol. 9, no. 9, Sept. 2005, pp. 802-804.
  • [15]K. Miroslav et al., “On the Practical Performance of Rateless Codes,” Proc. WINSYS, Porto, Portugal, July 2008, pp. 1-4.
  文献评价指标  
  下载次数:1次 浏览次数:3次