期刊论文详细信息
Journal of Space Weather and Space Climate
On the possible use of radio occultation middle latitude electron density profiles to retrieve thermospheric parameters
Ioanna Tsagouri2  Bruno Zolesi1  Loredanna Perrone1  Anna Belehaki2  Andrei V. Mikhailov3 
[1] Istituto Nazionale di Geofisica e Vulcanologia (INGV),Via di Vigna Murata 605,Rome00143,Italy;Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou,Palaia Penteli15236,Greece;Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk,Moscow Region142190,Russia
关键词: Density;    Satellites;    Drag;    Ionosphere (mid latitudes);    Thermosphere;   
Others  :  800623
DOI  :  doi:10.1051/swsc/2014009
 received in 2013-05-20, accepted in 2014-02-28,  发布年份 2014
PDF
【 摘 要 】

This paper investigates possible use of middle latitude daytime COSMIC and CHAMP ionospheric radio occultation (IRO) electron density profiles (EDPs) to retrieve thermospheric parameters, based on the Mikhailov et al. (2012) method. The aim of this investigation is to assess the applicability of this type of observations for the routine implementation of the method. According to the results extracted from the analysis presented here, about half of COSMIC IRO EDP observed under solar minimum (2007–2008) conditions gave neutral gas density with an inaccuracy close to the declared absolute inaccuracy ±(10–15)% of CHAMP observations, with the results being better than the empirical models JB-2008 and MSISE-00 provide. For the other half of IRO EDP, either the solution provided by the method had to be rejected due to insufficient accuracy or no solution could be obtained. For these cases, the parameters foF2 and hmF2 extracted from the corresponding IRO profiles have been found to be inconsistent with the classic mid-latitude daytime F2-layer formalism that the method relies on, and they are incompatible with the general trend provided by the IRI model. For solar maximum conditions (2002) the method was tested with IRO EDP from CHAMP and it is indicated that its performance is quite stable in the sense that a solution could be obtained for all the cases analyzed here. However available CHAMP EDP are confined by ~ 400 km in altitude and this might be the reason for the 20% bias of the retrieved densities toward larger values in respect to the observed densities. IRO observations up to 600 km under solar maximum are required to confirm the exact performance of the method.

【 授权许可】

   
© A.V. Mikhailov et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707195338464.pdf 523KB PDF download
Fig. 8. 43KB Image download
Fig. 7. 30KB Image download
Fig. 6. 28KB Image download
Fig. 5. 40KB Image download
Fig. 4. 39KB Image download
Fig. 3. 50KB Image download
Fig. 2. 66KB Image download
Fig. 1. 50KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Berger, C., R. Biancale, M. Ill, and F. Barlier, Improvement of the empirical thermospheric model DTM: DTM94-comparative review on various temporal variations and prospects in space geodesy applications, J. Geod., 72, 161–178, 1998.
  • [2]Bilitza, D., International reference ionosphere – status 1995/96, Adv. Space Res., 20 (N9), 1751–1754, 1997.
  • [3]Bilitza, D., and B.W. Reinisch, International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42, 599–609, DOI: 10.1016/j.asr.2007.07.048, 2008. [NASA ADS]
  • [4]Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, in: AIAA/AAS Astrodynamics Specialist Conference, 18–21 August 2008, Honolulu, Hawaii, 19p. http://ccar.colorado.edu/muri/AIAA_2008-6438_JB2008_Model.pdf, 2008.
  • [5]Bruinsma, S.L., and G. Thuillier, The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties, J. Atmos. Sol. Terr. Phys., 65, 1053–1070, 2003.
  • [6]Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric density derived from CHAMP/STAR accelerometer observations, Planet Space Sci., 52, 297–312, 2004.
  • [7]Bruinsma, S., J. Forbes, R.S. Nerem, and X. Zhang, Thermospheric density response to the 20–21 November CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, DOI: 10.1029/2005JA011284, 2006.
  • [8]Dudeney, J.R., The accuracy of simple methods for determining the height of the maximum electron concentration of the F2-layer from scaled ionospheric characteristics, J. Atmos. Sol. Terr. Phys., 45, 629–640, 1983.
  • [9]Hajj, G.H., and L.J. Romans, Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33, 175–190, 1998.
  • [10]Hajj, G.A., E.R. Kursinski, L.J. Romans, W.I. Bertiger, and S.S. Leroy, A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol. Terr. Phys., 64, 451–469, 2002.
  • [11]Hajj, G.A., C.O. Ao, B.A. Iijima, D. Kuang, E.R. Kursinski, A.J. Mannucci, T.K. Meehan, L.J. Romans, M. de la Torre Juarez, and T.P. Yunck, CHAMP and SAC-C atmospheric occultation results and intercomparisons, J. Geophys. Res., 109, D06109, DOI: 10.1029/2003JD003909, 2004.
  • [12]Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.
  • [13]Heise, S., N. Jakowski, A. Wehrenpfennig, Ch. Reigber, and H. Lühr, Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: initial results, Geophys. Res. Lett., 29 (14), DOI: 10.1029/2002GL014738, 2002.
  • [14]Jakowski, N., A. Wehrenpfennig, S. Heise, Ch. Reigber, H. Lühr, L. Grunwaldt, and T.K. Meehan, GPS radio occultation measurements of the ionosphere from CHAMP: Early results, Geophys. Res. Lett., 29 (N10), 1457, DOI: 10.1029/2001GL014364, 2002.
  • [15]Jakowski, N., R. Leitinger, and M. Angling, Radio occultation techniques for probing the ionosphere, Ann. Geophys., 47 (Suppl. 2/3), 1049–1066, 2004.
  • [16]Kelley, M.C., V.K. Wong, N. Aponte, C. Coker, A.J. Mannucci, and A. Komjathy, Comparison of COSMIC occulatation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data, Radio Sci., 44, RS4011, DOI: 10.1029/2008RS004087, 2009.
  • [17]Kiseleva, M.V., M.P. Kiyanovski, V.S. Knyazuk, L.N. Lyakhova, and L.A. Yudovich, Prediction of F2-region critical frequencies, in Ionospheric disturbances and their influence on radio-wave communication, Nauka, Moscow, pp. 74–99 (In Russian), 1971.
  • [18]Kursinski, E.R., G.A. Hajj, J.T. Schofield, R.P. Linfield, and K.R. Hardy, Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102 (D19), 23429–23465, 1997.
  • [19]Lathuillère, C., M. Menvielle, A. Marchaudon, and S. Bruinsma, A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes, J. Geophys. Res., 113, A07–311, DOI: 10.1029/2007JA012991, 2008.
  • [20]Lee, I.T., T. Matsuo, A.D. Richmond, J.Y. Liu, W. Wang, C.H. Lin, J.L. Anderson, and M.Q. Chen, Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering, J. Geophys. Res., 117, A10318, DOI: 10.1029/2012JA017700, 2012.
  • [21]Lei, J., S. Syndergaard, A.G. Burns, S.C. Solomon, W. Wang, Z. Zeng, R.G. Roble, Q. Wu, Y.-H. Kuo, J.M. Holt, S.-R. Zhang, D.L. Hysell, F.S. Rodrigues, and C.H. Lin, Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07–308, DOI: 10.1029/2006JA012240, 2007.
  • [22]Liu, J.Y., C.Y. Lin, C.H. Lin, H.F. Tsai, S.C. Solomon, Y.Y. Sun, I.T. Lee, W.S. Schreiner, and Y.H. Kuo, Artificial plasma cave in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC, J. Geophys. Res., 115, A07319, DOI: 10.1029/2009JA015079, 2010.
  • [23]McNamara, L.F., Spatial correlations of foF2 deviations and their implications for global ionospheric models: 2. Digisondes in the United States, Europe, and South Africa, Radio Sci., 4, RS2017, DOI: 10.1029/2008RS003956, 2009.
  • [24]Melbourne, W.G., E.S. Davis, C.B. Duncan, G.A. Hajj, K.R. Hardy, E.R. Kursinski, T.K. Meehan, L.E. Young, and T.P. Yunck, The Application of Spaceborne Gps to Atmospheric Limb Sounding and Global Change Monitoring. 147 pp. JPL Publ., 94-18, 1994.
  • [25]Mikhailov, A.V., and J. Lilensten, A revised method to extract thermospheric parameters from incoherent scatter observations, Ann. Geophys. Supp., 47 (N2/3), 985–1008, 2004.
  • [26]Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, DOI: http://dx.doi.org/10.1051/swsc/2012002, 2012.
  • [27]Mikhailov, A., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equator, J. Space Weather Space Clim., 3, A15, DOI: http://dx.doi.org/10.1051/swsc/2013038, 2013.
  • [28]Perrone, L., A.V. Mikhailov, and L.P. Korsunova, FORMOSAT-3/COSMIC E region observations and daytime foE at middle latitudes, J. Geophys. Res., 116, A06307, DOI: 10.1029/2010JA016411, 2011.
  • [29]Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues, J. Geophys. Res., 107, 1468, DOI: 10.1029/2002JA009430, 2002.
  • [30]Reigber, Ch., H. Lühr, and P. Schwintzer, CHAMP mission status and perspectives, Eos, Trans. Am. Geophys. Un., 81 (Suppl. no. 48), F307, 2000.
  • [31]Rishbeth, H., and O.K. Garriott, Introduction to Ionospheric Physics, Academic Press, New York and London 1969.
  • [32]Richmond, A.D., E.C. Ridley, and R.G. Roble, A Thermosphere/Ionosphere General Circulation Model with coupled electrodynamics, Geophys. Res. Lett., 19, 601–604, 1992.
  • [33]Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, et al., Analysis and validation of the GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102 (D25), 29849–29866, 1997.
  • [34]Rocken, C., Y.-H. Kuo, W.S. Schreiner, D. Hunt, S. Sokolovsky, and C. McCormick, COSMIC system description, Terr. Atmos. Oceanic Sci., 11, 21–52, 2000.
  • [35]Schreiner, W.S., S.V. Sokolovskiy, C. Rocken, and D.C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34, 949–966, DOI: 10.1029/1999RS900034, 1999.
  • [36]Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt, Estimates of the precicision of GPS radio occutations from the COSMIC/FOROSAT-3 mission, Geophys. Res. Lett., 34, L04808, DOI: 10.1029/2006GL027557, 2007.
  • [37]Shim, J.S., M. Kuznetsova, L. Rastatter, D. Bilitza, M. Butala, et al., CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/hermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations, Space Weather, 10, S10004, DOI: 10.1029/2012SW000851 2012.
  • [38]Sutton, E.K., Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite Accelerometer Data, A thesis submitted to the Faculty of the Graduate School of the University of Colorado for the degree of Doctor of Philosophy, Department of Aerospace Engineering Sciences, 2008.
  • [39]Syndergaard, S., W.S. Schreiner, C. Rocken, D.C. Hunt, and K.F. Dymond, Preparing for COSMIC: Inversion and analysis of ionospheric data products. in Atmosphere and Climate: Studies by Occultation Methods, U., Foelsche, G. Kirchengast, and A.K. Steiner (Eds.). Springer, New York, 2006.
  • [40]Tsai, L.-C., W.H. Tsai, W.S. Schreiner, F.T. Berkey, and J.Y. Liu, Comparison of GPS/MET retrieved ionospheric electron density and ground-based ionosonde data, Earth Planets Space, 53, 193–205, 2001.
  • [41]Tsai, L.-C., C.-H. Liu, and T.Y. Hsio, Profiling of ionospheric electron density on FormoSat-3/COSMIC data: Results from the intense observation period experiment, Terr. Atmos. Ocean. Sci., 20, 181–191, 2009.
  • [42]Wang, W., M. Wiltberger, A.G. Burns, S.C. Solomon, T.L. Killeen, N. Maruyama, and J.G. Lyon, Initial results from the Coupled Magnetosphere-Ionosphere-Thermosphere Model: thermosphere-ionosphere responses, J. Atmos. Sol. Terr. Phys., 66 (15–16), 1425, 2004.
  • [43]Ware, R., M. Exner, D. Feng, M. Gorbunov, K. Hardy, et al., GPS sounding of the atmosphere: Preliminary results, Bull. Am. Meteorol. Soc., 77, 19–40, 1996.
  • [44]Wickert, J., C. Reigber, G. Beyerle, R. König, C. Marquardt, et al., Atmosphere sounding by GPS radio occultation: first results from CHAMP, Geophys. Res. Lett., 28 (17), 3263–3266, 2001.
  • [45]Yue, X., W.S. Schreiner, J. Lei, S.V. Sokolovsky, C. Rocken, D.C. Hunt, and Y.-H. Kuo, Error analysis of Abel retrieved electron density profiles from radio occultation measurements, Ann. Geophys., 28, 217–222, 2010.
  文献评价指标  
  下载次数:194次 浏览次数:36次