Journal of Space Weather and Space Climate | |
Observed effects of a geomagnetic storm on an RTK positioning network at high latitudes | |
Sebastian Schäfer1  Knut Stanley Jacobsen1  | |
[1] Norwegian Mapping Authority,Hønefoss,Norway | |
关键词: Coronal Mass Ejection (CME); storm; ionosphere (auroral); positioning system; space weather; | |
Others : 800717 DOI : doi:10.1051/swsc/2012013 |
|
received in 2012-03-16, accepted in 2012-08-08, 发布年份 2012 | |
【 摘 要 】
At high latitudes, above 60° N, in the vicinity of the auroral oval, the ionosphere frequently experiences disturbed conditions that impact GNSS-based services. The Norwegian Mapping Authority (NMA) is operating a national real-time kinematic (RTK) positioning network and an ionosphere monitoring software. This paper presents the ionospheric observations during a geomagnetic storm, and the observed consequences for the positioning service. Significant disruptions that can be clearly related to the ionospheric disturbances were observed. They tend to occur in roughly longitudinal bands, which is expected for disturbances caused by the particle and energy precipitation in the auroral oval. The position error is found to increase exponentially with increasing rate of TEC index (ROTI). The disturbances are compared to auroral electrojet measurements and results from an operational auroral oval forecasting model. The disturbances are found to be strongly related to auroral electrojet currents.
【 授权许可】
© Owned by the authors, Published by EDP Sciences 2012
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140707204030287.pdf | 5107KB | download | |
Fig. 14. | 25KB | Image | download |
Fig. 13. | 48KB | Image | download |
Fig. 12. | 71KB | Image | download |
Fig. 11. | 76KB | Image | download |
Fig. 10. | 74KB | Image | download |
Fig. 9. | 76KB | Image | download |
Fig. 8. | 76KB | Image | download |
Fig. 7. | 41KB | Image | download |
Fig. 6. | 67KB | Image | download |
Fig. 5. | 56KB | Image | download |
Fig. 4. | 61KB | Image | download |
Fig. 3. | 74KB | Image | download |
Fig. 2. | 52KB | Image | download |
Fig. 1. | 83KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
【 参考文献 】
- [1]Amm, O., and A. Viljanen, Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth, Planets Space, 51, 431–440, 1999.
- [2]Aquino, M. et al., Ionospheric scintillation and impact on GNSS users in Northern Europe: results of a 3 year study, Space Commun., 2005.
- [3]Basu, S. et al., A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atm. Solar-Terr. Phys., 61, 1219–1226, 1999.
- [4]Buonsanto, M.J., Ionospheric storms – a review, Space Sci. Rev., 88, 563–601, 1999.
- [5]Eastwood, J.P., The science of space weather, Philos. Trans. R. Soc., 366, 4489–4500, 2008.
- [6]EGNOS Safety of Life Service Definition Document, Ref: EGN-SSD SoL, V1.0. http://www.egnos-pro.esa.int/index.html
- [7]Frodge, S.L. et al., Real-time on-the-fly kinematic GPS system results, Navigation, 41 (2), 175–186, 1994.
- [8]Gonzalez, W.D., E. Echer, B.T. Tsurutani, A.L. Clua de Gonzalez, and A. Dal Lago, Interplanetary origin of intense, superintense and extreme geomagnetic storms, Space Sci. Rev., 158, 69–89, 2011.
- [9]Hernandez-Pajares, M., J.M. Juan, J. Sanz, A. Aragn-ngel, A. Garca-Rigo, D. Salazar, and M. Escudero, The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques, J. Geodesy, 85, 887, 2011.
- [10]Kintner, P.M., B.M. Ledvina, and E.R. de Paula, GPS and ionospheric scintillations, Space Weather, 5, S09003, 2007.
- [11]Pi, X. et al., Monitoring of global ionospheric irregularities using the worldwide GPS network, J. Atm. Solar-Terr. Phys., 24 (18), 2283–2286, 1997.
- [12]Poppe, B.B., New scales help public, technicians understand space weather, Eos Trans. AGU, 81 (29), 322, 2000.
- [13]Rizos, C., Network RTK research and implementation – a geodetic perspective, J. Global Positioning Syst., 1 (2), 144–150, 2003.
- [14]Sigernes, F., M. Dyrland, P. Brekke, S. Chernouss, D.A. Lorentzen, K. Oksavik, and C.S. Deehr, Two methods to forecast auroral displays, J. Space Weather Space Clim., 1, A03, 2011.
- [15]Singh, A.K., D. Siingh, and R.P. Singh, Space weather: Physics, effects and predictability, Surv. Geophys., 31, 581, 2010.
- [16]Skone, S. et al., Characterizing ionospheric irregularities for auroral scintillations, Proceedings of ION GNSS, 2009.
- [17]Tiwari, R. et al., Investigation of high latitude ionospheric scintillation observed in the Vanadian region, Proceedings of ION GNSS, 2010.
- [18]Wang, H., H. Luehr, A. Ridley, P. Ritter, and Y. Yu, Storm time dynamics of auroral electrojets: CHAMP observation and the space weather modeling framework comparison, Ann. Geophysicae, 26, 555–570, 2008.
- [19]Watermann, J., R. Vainio, J. Lilensten, A. Belehaki, and M. Messerotti, The state of space weather scientific modeling – an introduction, Space Sci. Rev., 147, 111–120, 2009.
- [20]Yeh, K.C., and C.-H. Liu, Radio wave scintillations in the ionosphere, Proc. IEEE, 70, 324, 1982.