期刊论文详细信息
Journal of Space Weather and Space Climate
A semi-analytical foreshock model for energetic storm particle events inside 1 AU
Timo Laitinen4  Alexandr Afanasiev1  Hannu E. J. Koskinen3  Markus Battarbee2  Arttu Pönni1  Rami Vainio2 
[1] Department of Physics, University of Helsinki,PO Box 64,FI 00014,Finland;Deparment of Physics and Astronomy, University of Turku,FI 20014,Finland;Finnish Meteorological Institute,PO Box 503,00101Helsinki,Finland;Jeremiah Horrocks Institute, University of Central Lancashire,PR1 2HE Preston, Lancashire,UK
关键词: Interplanetary medium;    Heliosphere;    Shocks;    SEP;    Energetic particle;   
Others  :  800627
DOI  :  doi:10.1051/swsc/2014005
 received in 2013-09-16, accepted in 2014-02-03,  发布年份 2014
PDF
【 摘 要 】

We have constructed a semi-analytical model of the energetic-ion foreshock of a CME-driven coronal/interplanetary shock wave responsible for the acceleration of large solar energetic particle (SEP) events. The model is based on the analytical model of diffusive shock acceleration of Bell (1978), appended with a temporal dependence of the cut-off momentum of the energetic particles accelerated at the shock, derived from the theory. Parameters of the model are re-calibrated using a fully time-dependent self-consistent simulation model of the coupled particle acceleration and Alfvén-wave generation upstream of the shock. Our results show that analytical estimates of the cut-off energy resulting from the simplified theory and frequently used in SEP modelling are overestimating the cut-off momentum at the shock by one order magnitude. We show also that the cut-off momentum observed remotely far upstream of the shock (e.g., at 1 AU) can be used to infer the properties of the foreshock and the resulting energetic storm particle (ESP) event, when the shock is still at small distances from the Sun, unaccessible to the in-situ observations. Our results can be used in ESP event modelling for future missions to the inner heliosphere, like the Solar Orbiter and Solar Probe Plus as well as in developing acceleration models for SEP events in the solar corona.

【 授权许可】

   
© R. Vainio et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707195649719.pdf 1731KB PDF download
Fig. 8. 41KB Image download
Fig. 7. 43KB Image download
Fig. 6. 97KB Image download
Fig. 5. 47KB Image download
Fig. 4. 37KB Image download
Fig. 3. 78KB Image download
Fig. 2. 19KB Image download
Fig. 1. 19KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Aran, A., B. Sanahuja, and D. Lario, Fluxes and fluences of SEP events derived from SOLPENCO, Ann. Geophys., 23, 3047–3053, 2005.
  • [2]Battarbee, M., Acceleration of Solar Energetic Particles in coronal shocks through self-generated turbulence, PhD Thesis, University of Turku, Annales Universitatis Turkuensis AI 475, 126 pp, 2013
  • [3]Battarbee, M., T. Laitinen, and R. Vainio, Heavy-ion acceleration and self-generated waves in coronal shocks, A&A, 535, A34, 2011. [NASA ADS]
  • [4]Battarbee, M., R. Vainio, T. Laitinen, and H. Hietala, Injection of thermal and suprathermal seed particles in coronal shocks of varying obliquity, A&A, 558, A110, 2013.
  • [5]Bell, A.R., The acceleration of cosmic rays in shock fronts. I, Mon. Not. R. Astron. Soc., 182, 147–156, 1978.
  • [6]Cranmer, S.R., and A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén Waves from the solar photosphere to the distant heliosphere, Astrophys. J. Suppl., 156, 265–293, 2005. [NASA ADS]
  • [7]Drury, L. O’C., An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas, Rep. Prog. Phys., 46, 973–1027, 1983. [NASA ADS]
  • [8]Feynman, J., G. Spitale, J. Wang, and S. Gabriel, Interplanetary proton fluence model–JPL 1991, J. Geophys. Res., 98, 13281–13294, 1993.
  • [9]Horne, R., S. Glauert, N. Meredith, H. Koskinen, R. Vainio, et al., Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST, J. Space Weather Space Clim., 3, A20, 2013.
  • [10]Lario, D., and R.B. Decker, Estimation of solar energetic proton mission-integrated fluences and peak intensities for missions traveling close to the Sun, Space Weather, 9, S11003, 2011.
  • [11]Lario, D., B. Sanahuja, and A.M. Heras, Energetic particle events: Efficiency of interplanetary shocks as 50 keV < E < 100 MeV proton accelerators, Astrophys. J., 509, 415–434, 1998.
  • [12]Lario, D., M.-B. Kallenrode, R.B. Decker, E.C. Roelof, S.M. Krimigis, A. Aran, and B. Sanahuja, Radial and longitudinal dependence of solar 4–13 MeV and 27–37 MeV proton peak intensities and fluences: Helios and IMP 8 observations, Astrophys. J., 653, 1531–1544, 2006.
  • [13]Lario, D., A. Aran, N. Agueda, and B. Sanahuja, Radial dependence of proton peak intensities and fluences in SEP events: Influence of the energetic particle transport parameters, Adv. Space Res., 40 (3), 289–294, 2007.
  • [14]Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res., 88, 6109–6119, 1983. [NASA ADS]
  • [15]Lee, M.A., Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock, Astrophys. J. Suppl. Ser., 158, 38–67, 2005. [NASA ADS]
  • [16]Li, G., G.P. Zank, and W.K.M. Rice, Energetic particle acceleration and transport at coronal mass ejection-driven shocks, J. Geophys. Res., 108, 1082, 2013.
  • [17]Ng, C.K., and D.V. Reames, Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfvén waves, Astrophys. J., 424, 1032–1048, 1994. [NASA ADS]
  • [18]Ng, C.K., and D.V. Reames, Shock acceleration of solar energetic protons: The first 10 minutes, Astrophys. J., 686, L123–L126, 2008. [NASA ADS]
  • [19]Pomoell, J., and R. Vainio, Influence of solar wind heating formulations on the properties of shocks in the corona, Astrophys. J., 745, 151, 2012. [NASA ADS]
  • [20]Pomoell, J., R. Vainio, and R. Kissmann, MHD simulation of the evolution of shock structures in the solar corona: implications for coronal shock acceleration, Astrophys. Space Sci. Trans., 7, 387–394, 2011. [NASA ADS]
  • [21]Reames, D.V., Particle acceleration at the Sun and in the heliosphere, Space Sci. Res., 90, 413–491, 1999.
  • [22]Reames, D.V., and C.K. Ng, Streaming-limited intensities of solar energetic particles, Astrophys. J., 504, 1002–1005, 1998.
  • [23]Rice, W.K.M., G.P. Zank, and G. Li, Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength, J. Geophys. Res., 108, 1369, 2003.
  • [24]Vainio, R., On the generation of Alfvén waves by solar energetic particles, A&A, 406, 735–740, 2003. [NASA ADS]
  • [25]Vainio, R., and T. Laitinen, Monte Carlo simulations of coronal diffusive shock acceleration in self-generated turbulence, Astrophys. J., 658, 622–630, 2007. [NASA ADS]
  • [26]Vainio, R., and T. Laitinen, Simulations of coronal shock acceleration in self-generated turbulence, J. Atmos. Sol. Terr. Phys., 70, 467–474, 2008. [NASA ADS]
  • [27]Vainio, R., N. Agueda, A. Aran, and D. Lario, Modeling of solar energetic particles in interplanetary space. In: Space Weather, J., Lilensten, Editor, Astrophys. Space Sci. Lib, 344, Springer: Dordrecht, 27–38, 2007.
  • [28]Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, and R.A. Mewaldt, Using the path code for modeling gradual SEP events in the inner heliosphere, Astrophys. J., 693, 894–900, 2009.
  • [29]Verkhoglyadova, O.P., G. Li, G.P. Zank, Q. Hu, C.M.S. Cohen, R.A. Mewaldt, G.M. Mason, D.K. Haggerty, T.T. von Rosenvinge, and M.D. Looper, Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event, J. Geophys. Res., 115, A12103, 2010. [NASA ADS]
  • [30]Verkhoglyadova, O.P., G. Li, X. Ao, and G.P. Zank, Radial dependence of peak proton and iron fluxes in solar energetic particle events: Application of the PATH code, Astrophys. J., 757, 75, 2012.
  • [31]Zank, G.P., W.K.M. Rice, and C.C. Wu, Particle acceleration and coronal mass ejection driven shocks: A theoretical model, J. Geophys. Res., 105, 25079–25096, 2000.
  文献评价指标  
  下载次数:201次 浏览次数:25次