期刊论文详细信息
Abstract and Applied Analysis
Tractable Approximation to Robust Nonlinear Production Frontier Problem
Research Article
Nan-jing Huang2  Xing Wang2  Lei Wang1 
[1] Department of Economic Mathematics, South Western University of Finance and Economics, Sichuan, Chengdu 610074, China, swufe.edu.cn;Department of Mathematics, Sichuan University, Chengdu 610064, China, scu.edu.cn
Others  :  1268704
DOI  :  10.1155/2012/965835
 received in 2012-09-04, accepted in 2012-09-24,  发布年份 2012
PDF
【 摘 要 】

Robust optimization is a rapidly developing methodology for handling optimization problems affected by the uncertain-but-bounded data perturbations. In this paper, we consider the nonlinear production frontier problem where the traditional expected linear cost minimization objective is replaced by one that explicitly addresses cost variability. We propose a robust counterpart for the nonlinear production frontier problem that preserves the computational tractability of the nominal problem. We also provide a guarantee on the probability that the robust solution is feasible when the uncertain coefficients obey independent and identically distributed normal distributions.

【 授权许可】

CC BY   
Copyright © 2012 Lei Wang et al. 2012

【 预 览 】
附件列表
Files Size Format View
965835.pdf 526KB PDF download
【 参考文献 】
  • [1]A. Ben-Tal, A. Nemirovski. (1998). Robust convex optimization. Mathematics of Operations Research.23(4):769-805. DOI: 10.1287/moor.23.4.769.
  • [2]A. Ben-Tal, A. Nemirovski. (1999). Robust solutions of uncertain linear programs. Operations Research Letters.25(1):1-13. DOI: 10.1287/moor.23.4.769.
  • [3]A. Ben-Tal, A. Nemirovski. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming.88(3):411-424. DOI: 10.1287/moor.23.4.769.
  • [4]A. Ben-Tal, A. Nemirovski. (2002). Robust optimization—methodology and applications. Mathematical Programming.92(3):453-480. DOI: 10.1287/moor.23.4.769.
  • [5]A. Ben-Tal, A. Nemirovski, C. Roos. (2002). Robust solutions of uncertain quadratic and conic quadratic problems. SIAM Journal on Optimization.13(2):535-560. DOI: 10.1287/moor.23.4.769.
  • [6]D. Bertsimas, M. Sim. (2004). The price of robustness. Operations Research.52(1):35-53. DOI: 10.1287/moor.23.4.769.
  • [7]D. Bertsimas, M. Sim. (2006). Tractable approximations to robust conic optimization problems. Mathematical Programming.107(1-2):5-36. DOI: 10.1287/moor.23.4.769.
  • [8]L. El Ghaoui, H. Lebret. (1997). Robust solutions to least-squares problems with uncertain data. SIAM Journal on Matrix Analysis and Applications.18(4):1035-1064. DOI: 10.1287/moor.23.4.769.
  • [9]L. El Ghaoui, F. Oustry, H. Lebret. (1999). Robust solutions to uncertain semidefinite programs. SIAM Journal on Optimization.9(1):33-52. DOI: 10.1287/moor.23.4.769.
  • [10]L. Wang, N. J. Huang. Robust solutions to uncertain weighted least squares problems. . DOI: 10.1287/moor.23.4.769.
  • [11]R. M. Solow. (1987). Book Review.36. DOI: 10.1287/moor.23.4.769.
  • [12]C. Carrado, L. Slifman. (1999). A decomposition of productivity and costs. American Economic Review.89:328-332. DOI: 10.1287/moor.23.4.769.
  • [13]A. N. Perakis, A. Denisis. (2008). A survey of short sea shipping and its propescts in the USA. Maritime Policy and Management.35(6):591-614. DOI: 10.1287/moor.23.4.769.
  • [14]J. Yan, X. Sun, J. Liu. (2009). Assessing container operator efficiency with heterogeneous and time-varying production frontiers. Transportation Research B.43(1):172-185. DOI: 10.1287/moor.23.4.769.
  文献评价指标  
  下载次数:28次 浏览次数:3次