期刊论文详细信息
Abstract and Applied Analysis
Some Relations of the Twisted q-Genocchi Numbers and Polynomials with Weight α and Weak Weight β
Research Article
N. S. Jung1  H. Y. Lee1  J. Y. Kang1 
[1] Department of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea, hnu.kr
Others  :  1268603
DOI  :  10.1155/2012/860921
 received in 2012-02-12, accepted in 2012-03-09,  发布年份 2012
PDF
【 授权许可】

CC BY   
Copyright © 2012 J. Y. Kang et al. 2012

【 预 览 】
附件列表
Files Size Format View
860921.pdf 498KB PDF download
【 参考文献 】
  • [1]M. Cenkci, M. Can, V. Kurt. (2004). -adic interpolation functions and Kummer-type congruences for -twisted and -generalized twisted Euler numbers. Advanced Studies in Contemporary Mathematics.9(2):203-216. DOI: 10.4134/JKMS.2006.43.1.183.
  • [2]M. Cenkci, M. Can, V. Kurt. (2006). -extensions of Genocchi numbers. Journal of the Korean Mathematical Society.43(1):183-198. DOI: 10.4134/JKMS.2006.43.1.183.
  • [3]L.-C. Jang. (2009). A study on the distribution of twisted -Genocchi polynomials. Advanced Studies in Contemporary Mathematics.18(2):181-189. DOI: 10.4134/JKMS.2006.43.1.183.
  • [4]L.-C. Jang, K.-W. Hwang, Y.-H. Kim. (2010). A note on -Genocchi polynomials and numbers of higher order. Advances in Difference Equations-6. DOI: 10.4134/JKMS.2006.43.1.183.
  • [5]T. Kim. (2008). On the multiple -Genocchi and Euler numbers. Russian Journal of Mathematical Physics.15(4):481-486. DOI: 10.4134/JKMS.2006.43.1.183.
  • [6]T. Kim. (2007). On the -extension of Euler and Genocchi numbers. Journal of Mathematical Analysis and Applications.326(2):1458-1465. DOI: 10.4134/JKMS.2006.43.1.183.
  • [7]T. Kim. (2002). -Volkenborn integration. Russian Journal of Mathematical Physics.9(3):288-299. DOI: 10.4134/JKMS.2006.43.1.183.
  • [8]T. Kim. (2007). -Euler numbers and polynomials associated with -adic -integrals. Journal of Nonlinear Mathematical Physics.14(1):15-27. DOI: 10.4134/JKMS.2006.43.1.183.
  • [9]T. Kim, J. Choi, Y-.H. Kim, C. S. Ryoo. et al.(2011). Note on the weighted -adic -Euler measure on. Advanced Studies in Contemporary Mathematics.21:35-40. DOI: 10.4134/JKMS.2006.43.1.183.
  • [10]B. A. Kupershmidt. (2005). Reflection symmetries of -Bernoulli polynomials. Journal of Nonlinear Mathematical Physics.12:412-422. DOI: 10.4134/JKMS.2006.43.1.183.
  • [11]C. S. Ryoo, T. Kim, L.-C. Jang. (2007). Some relationships between the analogs of Euler numbers and polynomials. Journal of Inequalities and Applications-22. DOI: 10.4134/JKMS.2006.43.1.183.
  • [12]C. S. Ryoo. (2010). On the generalized Barnes type multiple -Euler polynomials twisted by ramified roots of unity. Proceedings of the Jangjeon Mathematical Society.13(2):255-263. DOI: 10.4134/JKMS.2006.43.1.183.
  • [13]C. S. Ryoo. (2011). A note on the weighted -Euler numbers and polynomials. Advanced Studies in Contemporary Mathematics.21(1):47-54. DOI: 10.4134/JKMS.2006.43.1.183.
  • [14]C. S. Ryoo. (2008). Calculating zeros of the twisted Genocchi polynomials. Advanced Studies in Contemporary Mathematics.17(2):147-159. DOI: 10.4134/JKMS.2006.43.1.183.
  • [15]Y. Simsek, V. Kurt, D. Kim. (2007). New approach to the complete sum of products of the twisted -Bernoulli numbers and polynomials. Journal of Nonlinear Mathematical Physics.14(1):44-56. DOI: 10.4134/JKMS.2006.43.1.183.
  • [16]Y. Simsek. (2006). Theorems on twisted -function and twisted Bernoulli numbers. Advanced Studies in Contemporary Mathematics.12:237-246. DOI: 10.4134/JKMS.2006.43.1.183.
  文献评价指标  
  下载次数:4404次 浏览次数:6666次