EPJ Photovoltaics | |
A modelling study of the performance of conventional diffused P/N junction and heterojunction solar cells at different temperatures | |
and P. Chatterjee1  P. Roca i Cabarrocas1  M. Labrune4  A. Datta2  S. Chakraborty3  | |
[1] Laboratoire de Physique des Interfaces et Couches Minces, CNRS,cÉole Polytechnique,91128Palaiseau, France;Haltu High School for Girls (H.S.), Neli Nagar, Haltu,700 078Kolkata, India;Energy Research Unit, Indian Association for the Cultivation ofScience, Jadavpur,700032Kolkata, India;Total S.A., Gas &Power – R&D Division, 92400Courbevoie, France | |
Others : 808637 DOI : doi:10.1051/epjpv/2013021 |
|
【 摘 要 】
Conventional crystalline silicon (c-Si) diffused P/N junction solar cells remain thelargest contributor to solar electricity. In order to retain a high efficiency and aswell, reduce the cost of solar electricity, Sanyo has proposed the “heterojunction withintrinsic thin layer (HIT)” solar cells where the emitter and the back surface fieldlayers are deposited using low temperature (<200 °C)plasma processes, thus reducing the thermal budget and allowing for thinner wafers. Sincesolar cells are used in extremes of climate, we felt that it would be interesting to studythe behaviour of c-Si and HIT cells, based on both P- and N-type wafers at differenttemperatures. Our results indicate that in HIT cells the amorphous doped layers form aheterojunction on the c-Si substrate, with a large valence band discontinuity that acts asa barrier for hole collection, specially at low temperatures. It is the aim of thisarticle to investigate the effect of this valence band offset on solar cell performance atdifferent ambient temperatures.
【 授权许可】
© Chakraborty et al., published by EDP Sciences, 2013
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708172804197.pdf | 417KB | download | |
Fig. 5 | 46KB | Image | download |
Fig. 4 | 107KB | Image | download |
Fig. 3 | 71KB | Image | download |
Fig. 2 | 47KB | Image | download |
Fig. 1 | 62KB | Image | download |
【 图 表 】
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
【 参考文献 】
- [1]M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn J. Appl. Phys. 31, 3518 (1992)
- [2]T. Takahama, M. Taguchi, S. Kuroda, T. Matsuyama, M. Tanaka, S. Tsuda, S. Nakano, Y. Kuwano, in Proceedings of the 11th European Photovoltaic Solar Energy Conference, Montreux, Switzerland, 1992, p. 1057
- [3]T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi, E. Maruyama, Proceedings of the 26th European Photovoltaic Solar Energy Conference, 2011, p. 871. http://www.pv-tech.org/news/sanyo˙a˙hit˙with˙23˙solar˙cell˙efficiency˙record
- [4]H. Sakata, T. Nakal, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi, S. Kiyama, Proc. IEEE Photovoltaic Spec. Conf. 7 (2000)
- [5]E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, in Proceedings 4th World Conference on Photovoltais Solar Energy Conversion, Hawaii, USA, 2006, pp. 1455-1460
- [6]P. Roca i Cabarrocas, J.B. Chevrier, J. Huc, A. Lloret, J.Y. Parey, J.P.M. Schmitt, J. Vacuum Sci. Technol. A 9, 2331 (1991)
- [7]I. Martin, M. Vetter, A. Orpella, J. Puigdollers, C. Voz, R. Alcubilla, J. Damon-Lacoste, P. Roca i Cabarrocas, in Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, p. 1185
- [8]P. Chatterjee, J. Appl. Phys. 76, 1301 (1994)
- [9]P. Chatterjee, J. Appl. Phys. 79, 7339 (1996)
- [10]M. Nath, P. Chatterjee, J. Damon-Lacoste, P. Roca i Cabarrocas, J. Appl. Phys. 103, 034506 (2008)
- [11]F.A. Rubinelli, S.J. Fonash, J.K. Arch, in Proceedings of the 6th International Photovoltaic Science & Engineering Conference, edited by B.K. Das, S.N. Singh (Oxford & IBH publishing Co.Pvt.Ltd., New Delhi, Bombay, Calcutta, 1992), p. 811
- [12]R. Stangl, M. Kriegel, K.V. Maydell, L. Korte, M. Schmidt, W. Fuhs, Conference record 31st IEEE Photovoltaic Specialists Conference, 2005, p. 1556
- [13]R. Varache, J.P. Kleider, W. Favre, L. Korte, J. Appl. Phys. 112, 123717 (2012)
- [14]M.J. Powell, S.C. Deane, Phys. Rev. B 48, 10815 (1993)
- [15]M.J. Powell, S.C. Deane, Phys. Rev. B 53, 10121 (1996)
- [16]V. Halpern, Philos. Mag. B 54, 473 (1986)
- [17]C. Longeaud, J.P. Kleider, Phys. Rev. B 48, 8715 (1993)
- [18]J.P. Kleider, A.S. Gudovskikh, P. Roca i Cabarrocas, Appl. Phys. Lett. 92, 162101 (2008)
- [19]F. Leblanc, J. Perrin, J. Schmitt, J. Appl. Phys. 75, 1074 (1994)
- [20]P. Chatterjee, M. Favre, F. Leblanc, J. Perrin, Mat. Res. Soc. Symp. Proc. 426, 593 (1996)
- [21]V. Alex, S. Finkbeiner, J. Weber, J. Appl. Phys. 79, 6943 (1996)
- [22]S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, London, Sydney, Toronto, 1969)
- [23]C.R. Wronski, J. Non-Cryst. Solids 141, 16b (1992)
- [24]N. Dasgupta, A. Dasgupta, Semiconductor Devices: Modelling, Technology (Prentice-Hall of India Private Limited, New Delhi, 2004)
- [25]A. Datta, J. Damon-Lacoste, P. Roca i Cabarrocas, P. Chatterjee, Sol. Energy Mater. Sol. Cells 92, 1500 (2008)
- [26]A. Datta, J. Damon-Lacoste, M. Nath, P. Roca i Cabarrocas, P. Chatterjee, Mater. Sci. Eng. B 159-160, 10 (2009)
- [27]M. Taguchi, E. Maruyama, M. Tanaka, Jpn J. Appl. Phys. 47, 814 (2008)
- [28]M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, P. Roca i Cabarrocas, J. Appl. Phys. 107, 054521 (2010)
- [29]M. Brinza, G. Adriaenssens, P. Roca i Cabarrocas, Thin Solid Films 427, 123 (2003)
- [30]M.W.M. van Cleef, F.A. Rubinelli, R. Rizzoli, R. Pinghini, R.E.I. Schropp, W.F. van der Weg, Jpn J. Appl. Phys. 37, 3926 (1998)