期刊论文详细信息
Advances in Astronomy
New Insights on Cosmic Ray Modulation through a Joint Use of Nonstationary Data-Processing Methods
Research Article
V. Carbone3  M. Storini1  M. Laurenza1  A. Vecchio2 
[1] IAPS, INAF, Via del Fosso del Cavaliere 100, 00133 Roma, Italy, inaf.it;Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy, unical.it;Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy, unical.it;Liquid Crystal Laboratory, INFM, Ponte P. Bucci Cubo 33B, 87036 Rende (CS), Italy
Others  :  1267911
DOI  :  10.1155/2012/834247
 received in 2012-08-03, accepted in 2012-10-31,  发布年份 2012
PDF
【 授权许可】

CC BY   
Copyright © 2012 A. Vecchio et al. 2012

【 预 览 】
附件列表
Files Size Format View
834247.pdf 2120KB PDF download
Figure 8 75KB Image download
(b) 77KB Image download
(a) 81KB Image download
Figure 6 85KB Image download
Figure 5 50KB Image download
Figure 4 167KB Image download
Figure 3 52KB Image download
Figure 2 161KB Image download
Figure 1 111KB Image download
【 图 表 】

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

(a)

(b)

Figure 8

【 参考文献 】
  • [1]S. E. Forbush. (1954). World-wide cosmic ray variations, 1937–1952. Journal of Geophysical Research.59:525. DOI: 10.1029/JZ059i004p00525.
  • [2]S. E. Forbush. (1966). Time variations of cosmic rays. Handbuch der Physik.49:159. DOI: 10.1029/JZ059i004p00525.
  • [3]V. F. Hess. (1912). Zeitschrift Für Physik.13:1084. DOI: 10.1029/JZ059i004p00525.
  • [4]M. Storini. (1997). Cosmic rays for solar-terrestrial physics. Nuovo Cimento della Societa Italiana di Fisica C.20(6):871-880. DOI: 10.1029/JZ059i004p00525.
  • [5]I. Dauberchies. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory.36:961-1005. DOI: 10.1029/JZ059i004p00525.
  • [6]P. Kumar, E. Foufoula-Georgiou. (1997). Wavelet analysis for geophysical applications. Reviews of Geophysics.35(4):385-412. DOI: 10.1029/JZ059i004p00525.
  • [7]K. Kudela, S. Yasue, K. Munakata, P. Bobik. et al.cosmicray variability at different scales: a wavelet approach. .7:163-166. DOI: 10.1029/JZ059i004p00525.
  • [8]M. Laurenza, S. Giangravé, M. Storini. (2008). Proceedings of the 30th International Cosmicray Conference. July 3–11, 2007, Mrida, Yucatn, Mexico.1:513-516. DOI: 10.1029/JZ059i004p00525.
  • [9]K. Kudela, J. Rybak, A. Antalovà, M. Storini. et al.(2002). Time evolution of low-frequency periodicities in cosmic ray intensity. Solar Physics.205:165-175. DOI: 10.1029/JZ059i004p00525.
  • [10]C. Kato, K. Munakata, S. Yasue, K. Inoue. et al.(2003). A 1.7-year quasi-periodicity in cosmic ray intensity variation observed in the outer heliosphere. Journal of Geophysical Research A.108(10)-7. DOI: 10.1029/JZ059i004p00525.
  • [11]J. Rybàk, A. Antalovà, M. Storini. (2001). The wavelet analysis of the solar and cosmic-ray data. Space Science Reviews.97(1–4):359-362. DOI: 10.1029/JZ059i004p00525.
  • [12]J. F. Valdés-Galicia, V. M. Velasco. (2008). Variations of mid-term periodicities in solar activity physical phenomena. Advances in Space Research.41:297-305. DOI: 10.1029/JZ059i004p00525.
  • [13]M. Laurenza, M. Storini. (2006). Memorie Della Societa Astronomica Italiana.9:109. DOI: 10.1029/JZ059i004p00525.
  • [14]M. Laurenza, M. Storini. . DOI: 10.1029/JZ059i004p00525.
  • [15]N. E. Huang, Z. Shen, S. R. Long. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Royal Society of London Proceedings A.454:903. DOI: 10.1029/JZ059i004p00525.
  • [16]P. Flandrin, G. Rilling, P. Gonçalvés. (2004). Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters.11(2):112-114. DOI: 10.1029/JZ059i004p00525.
  • [17]J. Terradas, R. Oliver, J. L. Ballester. (2004). Application of statistical techniques to the analysis of solar coronal oscillations. Astrophysical Journal.614(1):435-447. DOI: 10.1029/JZ059i004p00525.
  • [18]A. Vecchio, M. Laurenza, V. Carbone, M. Storini. et al.(2010). Quasi-biennial modulation of solar neutrino flux and solar and galactic cosmic rays by solar cyclic activity. Astrophysical Journal Letters.709(1):L1-L5. DOI: 10.1029/JZ059i004p00525.
  • [19]A. Vecchio, M. Laurenza, D. Meduri, V. Carbone. et al.(2012). The dynamics of the solar magnetic field: polarity reversals, butterfly diagram, and quasi-biennial oscillations. Astrophysical Journal.749(1). DOI: 10.1029/JZ059i004p00525.
  • [20]B. L. Barnhart, W. E. Eichinger. (2011). Analysis of sunspot variability using the hilbert—huang transform. Solar Physics.269(2):439-449. DOI: 10.1029/JZ059i004p00525.
  • [21]M. Laurenza, A. Vecchio, V. Carbone, M. Storini. et al.(2012). Quasi-biennial modulation of galactic cosmic rays. The Astrophysical Journal.749:167. DOI: 10.1029/JZ059i004p00525.
  • [22]C. Torrence, G. P. Compo. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society.79(1):61-78. DOI: 10.1029/JZ059i004p00525.
  • [23]D. A. T. Cummings, R. A. Irizarry, N. E. Huang, T. P. Endy. et al.(2004). Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature.427(6972):344-347. DOI: 10.1029/JZ059i004p00525.
  • [24]Z. Wu, N. E. Huang. (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society A.460(2046):1597-1611. DOI: 10.1029/JZ059i004p00525.
  • [25]E. E. Benevolenskaya. (1998). A model of the double magnetic cycle of the sun. Astrophysical Journal Letters.509(1):L49-L52. DOI: 10.1029/JZ059i004p00525.
  • [26]G. A. Bazilevskaya, M. B. Krainev, V. S. Makhmutov, E. O. Flückiger. et al.(2000). Structure of the maximum phase of solar cycles 21 and 22. Solar Physics.197(1):157-174. DOI: 10.1029/JZ059i004p00525.
  • [27]G. A. Bazilevskaya, V. S. Makhmutov, A. I. Sladkova. (2006). Gnevyshev gap effects in solar energetic particle activity. Advances in Space Research.38(3):484-488. DOI: 10.1029/JZ059i004p00525.
  • [28]A. Vecchio, V. Carbone. (2009). Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astronomy and Astrophysics.502(3):981-987. DOI: 10.1029/JZ059i004p00525.
  • [29]E. Forgàcs-Dajka, T. Borkovits. (2007). Searching for mid-term variations in different aspects of solar activity—looking for probable common origins and studying temporal variations of magnetic polarities. Monthly Notices of the Royal Astronomical Society.374:282-291. DOI: 10.1029/JZ059i004p00525.
  • [30]G. Wibberenz, H. V. Cane. (2000). Simple analytical solutions for propagating diffusive barriers and application to the 1974 minicycle. Journal of Geophysical Research.105(8):18315. DOI: 10.1029/JZ059i004p00525.
  • [31]G. Wibberenz, H. V. Cane, I. G. Richardson, T. T. von Rosevinge. et al.(2001). The influence of tilt angle and magnetic field variations on cosmic ray modulation. Space Science Reviews.97:343-347. DOI: 10.1029/JZ059i004p00525.
  • [32]M. Storini, G. A. Bazilevskaya, E. O. Flückiger, M. B. Krainev. et al.(2003). The Gnevyshev gap: a review for space weather. Advances in Space Research.31(4):895-900. DOI: 10.1029/JZ059i004p00525.
  • [33]M. Storini. (1995). Testing solar activity features during the descending phase of sunspot cycle 22. Advances in Space Research.16(9):51-55. DOI: 10.1029/JZ059i004p00525.
  • [34]F. Feminella, M. Storini. (1997). Large-scale dynamical phenomena during solar activity cycles. Astronomy and Astrophysics.322(1):311-319. DOI: 10.1029/JZ059i004p00525.
  • [35]L. F. Burlaga, F. B. McDonald, N. F. Ness. (1993). Cosmic ray modulation and the distant heliospheric magnetic field: voyager 1 and 2 observations from 1986 to 1989. Journal of Geophysical Research.98(1):1. DOI: 10.1029/JZ059i004p00525.
  • [36]M. S. Potgieter, J. A. le Roux. (1994). The long-term heliospheric modulation of galactic cosmic rays according to a time-dependent drift model with merged interaction regions. The Astrophysical Journal.423:817. DOI: 10.1029/JZ059i004p00525.
  • [37]I. Sabbah, M. Rybanský. (2006). Galactic cosmic ray modulation during the last five solar cycles. Journal of Geophysical Research A.111. DOI: 10.1029/JZ059i004p00525.
  • [38]M. Singh, Y. P. Singh, Badruddin. (2008). Solar modulation of galactic cosmic rays during the last five solar cycles. Journal of Atmospheric and Solar-Terrestrial Physics.70:169-183. DOI: 10.1029/JZ059i004p00525.
  • [39]W. R. Webber. Voyager measurements of galactic cosmic rays and implications for modulation in the heliosheath and beyond. .858:135-140. DOI: 10.1029/JZ059i004p00525.
  • [40]M. S. Potgieter. (2008). Challenges to cosmic ray modeling: from beyond the solar wind termination shock. Advances in Space Research.41:245-458. DOI: 10.1029/JZ059i004p00525.
  • [41]N. Gopalswamy, S. Nunes, S. Yashiro, R. A. Howard. et al.(2004). Variability of solar eruptions during cycle 23. Advances in Space Research.34(2):391-396. DOI: 10.1029/JZ059i004p00525.
  • [42]C. Plainaki, A. Belov, E. Eroshenko, V. Kurt. et al.(2005). Unexpected burst of solar activity recorded by neutron monitors during October-November 2003. Advances in Space Research.35(4):691-696. DOI: 10.1029/JZ059i004p00525.
  • [43]J. D. Richardson, C. Wang, J. C. Kasper, Y. Liu. et al.(2005). Propagation of the October/November 2003 CMEs through the heliosphere. Geophysical Research Letters.32-4. DOI: 10.1029/JZ059i004p00525.
  • [44]D. S. Intriligator, W. Sun, M. Dryer, C. D. Fry. et al.(2005). From the Sun to the outer heliosphere: Modeling and analyses of the interplanetary propagation of the October/November (Halloween) 2003 solar events. Journal of Geophysical Research A.110(9). DOI: 10.1029/JZ059i004p00525.
  • [45]E. J. Smith. (1990). Journal of Geophysical Research.95:731. DOI: 10.1029/JZ059i004p00525.
  • [46]J. R. Jokipii, E. H. Levy, W. B. Hubbard. (1977). Effects of particle drift on cosmic-ray transport. I—general properties, application to solar modulation. Astrophysical Journal Letters.213:861-868. DOI: 10.1029/JZ059i004p00525.
  • [47]M. S. Potgieter, J. A. le Roux. (1992). The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. I—general effects of the changing neutral sheet over the period 1985–1990. The Astrophysical Journal.386:336-346. DOI: 10.1029/JZ059i004p00525.
  • [48]J. A. le Roux, M. S. Potgieter. (1992). The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. II—on the energy dependence of the onset of new modulation in 1987. The Astrophysical Journal.390:661-667. DOI: 10.1029/JZ059i004p00525.
  • [49]J. A. le Roux, M. S. Potgieter. (1992). The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. IV—the role of heliospheric neutral sheet deformation. The Astrophysical Journal.397:686-693. DOI: 10.1029/JZ059i004p00525.
  • [50]S. E. S. Ferreira, M. S. Potgieter. (2004). Advances in Space Research.32:2003. DOI: 10.1029/JZ059i004p00525.
  • [51]S. E. S. Ferreira, M. S. Potgieter. (2004). Long-term cosmic-ray modulation in the heliosphere. The Astrophysical Journal.603:744. DOI: 10.1029/JZ059i004p00525.
  • [52]R. Manuel, S. E. S. Ferreira, M. S. Potgieter. (2011). Cosmic ray modulation in the outer heliosphere: predictions for cosmic ray intensities up to the heliopause along Voyager 1 and 2 trajectories. Advances in Space Research.48:874-883. DOI: 10.1029/JZ059i004p00525.
  • [53]J. T. Hoeksema, J. M. Wilcox, P. H. Scherrer. (1982). Structure of the heliospheric current sheet in the early portion of Sunspot Cycle 21. Journal of Geophysical Research.87:10331. DOI: 10.1029/JZ059i004p00525.
  • [54]J. R. Jokipii, B. Thomas. (1981). Effects of drift on the transport of cosmic rays. IV—modulation by a wavy interplanetary current sheet. Astrophysical Journal Letters.243:1115-1122. DOI: 10.1029/JZ059i004p00525.
  • [55]K. Kota, J. R. Jokipii. (1983). Effects of drift on the transport of cosmic rays. VI—a three-dimensional model including diffusion. The Astrophysical Journal.265:573-581. DOI: 10.1029/JZ059i004p00525.
  • [56]E. W. Cliver, A. G. Ling. (2001). 22 Year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophysical Journal Letters.551(2):L189-L192. DOI: 10.1029/JZ059i004p00525.
  文献评价指标  
  下载次数:132次 浏览次数:10次