EPJ Photovoltaics | |
Precise microstructuring of indium-tin oxide thin films on glass by selective femtosecond laser ablation | |
and G. Seifert2  S. Schweizer1  F. Steudel3  P. T. Miclea4  S. Krause3  | |
[1] Department of Electrical Engineering, South Westphalia University of Applied Sciences,Lübecker Ring 2,59494 Soest,Germany;Centre for Innovation Competence SiLi-nano®, Martin Luther University of Halle-Wittenberg,Karl-Freiherr-von-Fritsch-Str. 3,06120 Halle (Saale),Germany;Fraunhofer Center for Silicon Photovoltaics CSP, Walter-Hülse-Str. 1,06120 Halle (Saale),Germany;Institute of Physics, Martin Luther University of Halle-Wittenberg, Heinrich-Damerow-Str. 4,06120 Halle (Saale),Germany | |
Others : 808622 DOI : doi:10.1051/epjpv/2012013 |
|
【 摘 要 】
Transparent conductive oxide (TCO) thin films were removed from glass substrates using femtosecond laser pulses. Irradiating through the glass, the threshold for complete TCO ablation was much lower than for front-side irradiation. Additionally, the former method created almost rectangular cross-sectional groove profiles despite the Gaussian laser beam. This indicates a non-thermal ultrafast ablation mechanism via critical carrier concentration achieved by the femtosecond pulse in the TCO at the interface. Very narrow scribes of only 5 μm width provided very good electrical separation, making this technique very attractive for micro-structuring applications like scribing of thin-film solar cells.
【 授权许可】
© Krause et al., published by EDP Sciences, 2013
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708172620160.pdf | 1363KB | download | |
Fig. 5 | 27KB | Image | download |
Fig. 4 | 36KB | Image | download |
Fig. 3 | 25KB | Image | download |
Fig. 2 | 97KB | Image | download |
Fig. 1 | 32KB | Image | download |
【 图 表 】
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
【 参考文献 】
- [1]D. Ashkenasi, G. Müller, A. Rosenfeld, R. Stoian, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell, Appl. Phys. A 77, 223 (2003)
- [2]J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, T. Itina, Appl. Surf. Sci. 252, 4814 (2006)
- [3]G. Raciukaitis, M. Brikas, M. Gedvilas, T. Rakickas, Appl. Surf. Sci. 253, 6570 (2007)
- [4]S. Zoppel, H. Huber, G. Reider, Appl. Phys. A 89, 161 (2007)
- [5]P. Gecys, G. Raciukaitis, M. Gedvilas, A. Selskis, Eur. Phys. J. Appl. Phys. 46, 12508 (2009)
- [6]A. Schoonderbeek, V. Schütz, O. Haupt, U. Stute, J. Laser Micro Nanoeng. 5, 248 (2010)
- [7]P. Gecys, G. Raciukaitis, M. Ehrhardt, K. Zimmer, M. Gedvilas, Appl. Phys. A 101, 373 (2010)
- [8]T. Rublack, S. Hartnauer, P. Kappe, C. Swiatkowski, G. Seifert, Appl. Phys. A 103, 43 (2011)
- [9]T. Rublack, M. Schade, M. Muchow, H.S. Leipner, G. Seifert, J. Appl. Phys. 112, 023521 (2012)
- [10]W. Wang, G. Jiang, X. Mei, K. Wang, J. Shao, C. Yang, Appl. Surf. Sci. 256, 3612 (2010)
- [11]J.M. Liu, Opt. Lett. 7, 196 (1982) [PubMed]
- [12]A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85, 3301 (1999)
- [13]D. Arnold, E. Cartier, Phys. Rev. B 46, 15102 (1992)