期刊论文详细信息
Particle and Fibre Toxicology
Triaging informative cis-regulatory elements for the combinatorial control of temporal gene expression during Plasmodium falciparum intraerythrocytic development
Paul Horrocks2  Richard Emes1  Karen Russell2 
[1] Advanced Data Analysis Centre, University of Nottingham, Leicestershire LE12 5RD, UK;Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
关键词: Stage-specific expression;    Malaria;    Finding informative regulatory elements;    Combinatorial control;    Cis-acting DNA motifs;    Bioinformatics;    AP2 transcription factor;   
Others  :  1147049
DOI  :  10.1186/s13071-015-0701-0
 received in 2014-11-21, accepted in 2015-01-27,  发布年份 2015
PDF
【 摘 要 】

Background

Over 2700 genes are subject to stage-specific regulation during the intraerythrocytic development of the human malaria parasite Plasmodium falciparum. Bioinformatic analyses have identified a large number of over-represented motifs in the 5′ flanking regions of these genes that may act as cis-acting factors in the promoter-based control of temporal expression. Triaging these lists to provide candidates most likely to play a role in regulating temporal expression is challenging, but important if we are to effectively design in vitro studies to validate this role.

Methods

We report here the application of a repeated search of variations of 5′ flanking sequences from P. falciparum using the Finding Informative Regulatory Elements (FIRE) algorithm.

Results

Our approach repeatedly found a short-list of high scoring DNA motifs, for which cognate specific transcription factors were available, that appear to be typically associated with upregulation of mRNA accumulation during the first half of intraerythrocytic development.

Conclusions

We propose these cis-trans interactions may provide a combinatorial promoter-based control of gene expression to complement more global mechanisms of gene regulation that can account for temporal control during the second half of intraerythrocytic development.

【 授权许可】

   
2015 Russell et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150403195022534.pdf 1620KB PDF download
Figure 3. 94KB Image download
Figure 2. 90KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Deitsch K, Duraisingh M, Dzikowski R, Gunasekera A, Khan S, Le Roch K et al.. Mechanisms of gene regulation in Plasmodium. Am J Trop Med Hyg. 2007; 77:201-208.
  • [2]Horrocks P, Wong E, Russell K, Emes RD. Control of gene expression in Plasmodium falciparum - ten years on. Mol Biochem Parasitol. 2009; 164:9-25.
  • [3]Llinás M, Deitsch KW, Voss TS. Plasmodium gene regulation: far more to factor in. Trends Parasitol. 2008; 24:551-556.
  • [4]Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003; 1:e5.
  • [5]Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M et al.. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004; 14:2308-2318.
  • [6]Le Roch KG, Zhou YY, Blair PL, Grainger M, Moch JK, Haynes JD et al.. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003; 301:1503-1508.
  • [7]Llinas M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nuc Acids Res. 2006; 34:1166-1173.
  • [8]Ganesan K, Ponmee N, Jiang L, Fowble JW, White J, Kamchonwongpaisan S et al.. A genetically hard-wired metabolic transcriptome in Plasmodium falciparum fails to mount protective responses to lethal antifolates. PLoS Pathog. 2008; 4:e1000214.
  • [9]Gunasekera AM, Myrick A, Le Roch K, Winzeler E, Wirth DF. Plasmodium falciparum: genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. Exp Parasitol. 2007; 117:87-92.
  • [10]Hu G, Cabrera A, Kono M, Mok S, Chaal BK, Haase S et al.. Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum. Nat Biotechnol. 2010; 28:91-98.
  • [11]Natalang O, Bischoff E, Deplaine G, Proux C, Dillies MA, Sismeiro O et al.. Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics. 2008; 9:388. BioMed Central Full Text
  • [12]Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP, Noble WS, Le Roch KG. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res. 2014; 24:974-88.
  • [13]Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS, Lonardi S et al.. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. BMC Genomics. 2014; 15:347-359. BioMed Central Full Text
  • [14]Gopalakrishnan AM, Nyindodo LA, Ross Fergus M, Lopez-Estrano C. Plasmodium falciparum: preinitiation complex occupancy of active and inactive promoters during erythrocytic stage. Exp Parasitol. 2009; 121:46-54.
  • [15]Ponts N, Harris EY, Lonardi S, Le Roch KG. Nucleosome occupancy at transcription start sites in the human malaria parasite: a hard-wired evolution of virulence? Infect Genet Evol. 2011; 11:716-724.
  • [16]Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C, Hicks GR et al.. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 2010; 20:228-238.
  • [17]Shock JL, Fischer KF, DeRisi JL. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle. Genome Biol. 2007; 8:R134. BioMed Central Full Text
  • [18]Sims JS, Militello KT, Sims PA, Patel VP, Kasper JM, Wirth DF. Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. Eukaryot Cell. 2009; 8:327-338.
  • [19]Westenberger SJ, Cui L, Dharia N, Winzeler E, Cui L. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes. BMC Genomics. 2009; 10:610-621. BioMed Central Full Text
  • [20]Aravind L, Iyer LM, Wellems TE, Miller LH. Plasmodium biology: genomic gleanings. Cell. 2003; 115:771-785.
  • [21]Coulson RMR, Hall N, Ouzounis CA. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 2004; 14:1548-1554.
  • [22]De Silva EK, Gehrke AR, Olszewski K, Leon I, Chahal JS, Bulyk ML et al.. Specific DNA-binding by Apicomplexan AP2 transcription factors. Proc Natl Acad Sci U S A. 2008; 105:8393-8398.
  • [23]Lindner SE, De Silva EK, Keck JL, Llinas M. Structural determinants of DNA binding by a P. falciparum ApiAP2 transcriptional regulator. J Mol Biol. 2010; 395:558-567.
  • [24]Painter HJ, Campbell TL, Llinas M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol Biochem Parasitol. 2011; 176:1-7.
  • [25]Balaji S, Babu MM, Iyer LM, Aravind L. Discovery of the principal specific transcription factors of apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucl Acids Res. 2005; 33:3994-4006.
  • [26]Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BT, Moes S et al.. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog. 2010; 6:e1000784.
  • [27]Iwanaga S, Kaneko I, Kato T, Yuda M. Identification of an AP2-family protein that is critical for malaria liver stage development. PLoS One. 2012; 7:e47557.
  • [28]Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG et al.. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014; 507:248-252.
  • [29]Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ et al.. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014; 507:253-257.
  • [30]Yuda M, Iwanaga S, Shigenobu S, Kato T, Kaneko I. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol Microbiol. 2010; 75:854-863.
  • [31]Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ, Waters AP et al.. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol Microbiol. 2009; 71:1402-1414.
  • [32]Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinas M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 2010; 6:e1001165.
  • [33]Elemento O, Slonim N, Tavazoie S. A universal framework for regulatory element discovery across all genomes and data types. Mol Cell. 2007; 28:337-350.
  • [34]Gunasekera AM, Myrick A, Militello KT, Sims JS, Dong CK, Gierahn T et al.. Regulatory motifs uncovered among gene expression clusters in Plasmodium falciparum. Mol Biochem Parasitol. 2007; 153:19-30.
  • [35]Jurgelenaite R, Dijkstra TM, Kocken CH, Heskes T. Gene regulation in the intraerythrocytic cycle of Plasmodium falciparum. Bioinformatics. 2009; 25:1484-1491.
  • [36]Wu J, Sieglaff DH, Gervin J, Xie XS. Discovering regulatory motifs in the Plasmodium genome using comparative genomics. Bioinformatics. 2008; 24:1843-1849.
  • [37]Young J, Johnson J, Benner C, Yan SF, Chen K, Le Roch K et al.. In silico discovery of transcription regulatory elements in Plasmodium falciparum. BMC Genomics. 2008; 9:70. BioMed Central Full Text
  • [38]Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou YY et al.. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol BiochemParasitol. 2005; 143:67-79.
  • [39]Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics. 2013; 14:267-277. BioMed Central Full Text
  • [40]Horrocks P, Lanzer M. Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. Mol Biochem Parasitol. 1999; 99:77-87.
  • [41]Porter ME. Positive and negative effects of deletions and mutations within the 5′ flanking sequences of Plasmodium falciparum DNA polymerase delta. Mol Biochem Parasitol. 2002; 122:9-19.
  • [42]van Noort V, Huynen MA. Combinatorial gene regulation in Plasmodium falciparum. Trends Genet. 2006; 22:73-78.
  • [43]Bougdor A, Braun L, Cannella D, Hakimi MA. Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. Cell Microbiol. 2010; 12:413-23.
  • [44]Brick K, Watanabe J, Pizzi E. Core promoters are predicted by their distinct physicochemical properties in the genome of Plasmodium falciparum. Genome Biol. 2008; 9:R178. BioMed Central Full Text
  文献评价指标  
  下载次数:15次 浏览次数:6次