期刊论文详细信息
Respiratory Research
Oxygen-sensing mechanisms and the regulation of redox-responsive transcription factors in development and pathophysiology
John J Haddad1 
[1] Severinghaus-Radiometer Research Laboratories, Molecular Neuroscience Research Division, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, Medical Sciences Building S-261, 513 Parnassus Avenue, San Francisco, California 94143-0542, USA
关键词: redox equilibrium;    pathophysiology;    oxygen sensing;    NF-κB;    immunopharmacology;    HIF-1α;    glutathione;    development;    cytokine;    apoptosis;   
Others  :  1227393
DOI  :  10.1186/rr190
 received in 2002-02-25, accepted in 2002-07-15,  发布年份 2002
PDF
【 摘 要 】

How do organisms sense the amount of oxygen in the environment and respond appropriately when the level of oxygen decreases? Oxygen sensing and the molecular stratagems underlying the process have been the focus of an endless number of investigations trying to find an answer to the question: "What is the identity of the oxygen sensor?" Dynamic changes in pO2 constitute a potential signaling mechanism for the regulation of the expression and activation of reduction-oxidation (redox)-sensitive and oxygen-responsive transcription factors, apoptosis-signaling molecules and inflammatory cytokines. The transition from placental to lung-based respiration causes a relatively hyperoxic shift or oxidative stress, which the perinatal, developing lung experiences during birth. This variation in ΔpO2, in particular, differentially regulates the compartmentalization and functioning of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB). In addition, oxygen-evoked regulation of HIF-1α and NF-κB is closely coupled with the intracellular redox state, such that modulating redox equilibrium affects their responsiveness at the molecular level (expression/transactivation). The differential regulation of HIF-1α and NF-κB in vitro is paralleled by oxygen-sensitive and redox-dependent pathways governing the regulation of these factors during the transition from placental to lung-based respiration ex utero. The birth transition period in vivo and ex utero also regulates apoptosis signaling pathways in a redox-dependent manner, consistent with NF-κB being transcriptionally regulated in order to play an anti-apoptotic function. An association is established between oxidative stress conditions and the augmentation of an inflammatory state in pathophysiology, regulated by the oxygen- and redox-sensitive pleiotropic cytokines.

【 授权许可】

   
2003 Haddad, licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150928100121456.pdf 2212KB PDF download
Figure 12. 48KB Image download
Figure 11. 50KB Image download
Figure 10. 57KB Image download
Figure 9. 30KB Image download
Figure 8. 28KB Image download
Figure 7. 41KB Image download
Figure 6. 74KB Image download
Figure 5. 47KB Image download
Figure 4. 47KB Image download
Figure 3. 44KB Image download
Figure 2. 43KB Image download
Figure 1. 43KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Peers C, Kemp PJ: Acute oxygen sensing: Diverse but convergent mechanisms in airway and arterial chemoreceptors. Respir Res 2001, 2:145-149.
  • [2]Wenger RH: Mammalian oxygen sensing, signaling and gene regulation. J Exp Biol 2000, 203:1253-1263.
  • [3]Acker H: Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol 1994, 95:1-10.
  • [4]DE Atkinson (Ed): Cellular Energy Metabolism and its Regulation.. Academic Press, NY;; 1977.
  • [5]EA Boyden (Ed): Development of the Lung: Lung Biology in Health and Disease.. Dekker, NY;; 1977.
  • [6]Mason RJ, Williams MC: Type II alveolar cell: Defender of the alveolus. Am Rev Respir Dis 1977, 115:81-91.
  • [7]Fehrenbach H: Alveolar epithelia type II cell: Defender of the alveolus revisited. Respir Res 2001, 2:33-46.
  • [8]Crapo JD, Barry BE, Foscue HA, Shelburne J: Structural and biochemical changes in rat lungs occurring during exposure to lethal and adaptive doses of oxygen. Am Rev Respir Dis 1980, 122:123-143.
  • [9]Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D, Kenaga L, Speed TP, Chen Y, Clements JA: Alveolar lining layer is thin and continuous: Low-temperature scanning electron microscopy of rat lung. J Appl Physiol 1995, 79:1615-1628.
  • [10]RB Cotton (Ed): Fetal and Neonatal Physiology.. Saunders, PA;; 1998.
  • [11]Wessler I, Kirkpatrick CJ: Airway epithelium: More than just a barrier. Trends Pharmacol Sci 1999, 20:52-53.
  • [12]Thompson AB, Robbins RA, Romberger DJ: Immunological functions of the pulmonary epithelium. Eur Respir J 1985, 8:127-149.
  • [13]Haddad JJ, Land SC: O2-evoked regulation of HIF-1α and NF-κB in perinatal lung epithelium requires glutathione biosynthesis. Am J Physiol Lung Cell Mol Physiol 2000, 278:L492-L503.
  • [14]Haddad JJ, Olver RE, Land SC: Antioxidant/pro-oxidant equilibrium regulates HIF-1α and NF-κB redox sensitivity: Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. J Biol Chem 2000, 275:21130-21139.
  • [15]Desai TJ, Cardoso WV: Growth factors in lung development and disease: Friends or foe. Respir Res 2002, 3:2-5.
  • [16]Arrigo AP: Gene expression and the thiol redox state. Free Radic Biol Med 1999, 27:936-944.
  • [17]Sen CK, Packer L: Antioxidant and redox regulation of gene transcription. FASEB J 1996, 10:709-720.
  • [18]Sen CK: Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul 2000, 36:1-30.
  • [19]Haddad JJ, Land SC: The differential expression of apoptosis factors in the alveolar epithelium is redox sensitive and requires NF-κB (RelA)-selective targeting. Biochem Biophys Res Commun 2000, 271:257-267.
  • [20]Haddad JJ, Choudhary KK, Land SC: The ex vivo differential expression of apoptosis signaling cofactors in the developing lung: Essential role of oxygenation during the transition from placental to pulmonary-based respiration. Biochem Biophys Res Commun 2001, 281:311-316.
  • [21]Acarregui MJ, Brown JJ, Mallampalli PK: Oxygen modulates surfactant protein mRNA expression and phospholipid production in human fetal lung in vitro. Am J Physiol 1995, 268:L818-L825.
  • [22]Chabot F, Mitchell JA, Gutteridge JMC, Evans TW: Reactive oxygen species in acute lung injury. Eur Respir J 1998, 11:745-757.
  • [23]Acarregui MJ, Snyder JM, Mendelson CR: Oxygen modulates the differentiation of human fetal lung in vitro and its responsiveness to cAMP. Am J Physiol 1993, 264:L465-L474.
  • [24]Lubman RL, Kim K-J, Crandall ED: Alveolar epithelial barrier properties. In The Lung Scientific Foundations. Edited by Crystal RG, West JB, Barnes PJ. 1997, 585-602.
  • [25]Eckenhoff RG, Somlyo AP: Rat lung type II cell and lamellar body: Elemental composition in situ. Am J Physiol 1988, 254:C614-C620.
  • [26]Alder V, Yin Z, Tew KD, Ronai Z: Role of redox potential and reactive oxygen species in stress signaling. Oncogene 1999, 18:6104-6111.
  • [27]van der Vliet A, Cross CE: Oxidants, nitrosants and the lung. Am J Med 2000, 109:398-421.
  • [28]Bickler PE, Buck LT: Adaptations of vertebrate neurons to hypoxia and anoxia: Maintaining critical Ca2+ concentrations. J Exp Biol 1998, 201:1141-1152.
  • [29]Richalet JP: Oxygen sensors in the organism: Examples of regulation under altitude hypoxia in mammals. Comp Biochem Physiol A Physiol 1997, 118:9-14.
  • [30]Hochachka PW, Land SC, Buck LT: Oxygen sensing and signal transduction in metabolic defense against hypoxia: Lessons from vertebrate facultative anaerobes. Comp Biochem Physiol A Physiol 1997, 118:23-29.
  • [31]Gonzalez C, Vicario I, Almaraz L, Rigual R: Oxygen sensing in the carotid body. Biol Signals 1995, 4:245-256.
  • [32]Rooney SA, Young SL, Mendelson CR: Molecular and cellular processing of lung surfactant. FASEB J 1994, 8:957-967.
  • [33]Klings ES, Farber HW: Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease. Respir Res 2001, 2:280-285.
  • [34]Keane MP, Strieter RM: The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease. Respir Res 2002, 3:5-11.
  • [35]Chen CY, Huang YL, Lin TH: Association between oxidative stress and cytokine production in nickel-treated rats. Arch Biochem Biophys 1998, 356:127-132.
  • [36]Nesin M, Cunningham-Rundles S: Cytokines and neonates. Am J Perinatol 2000, 17:393-404.
  • [37]Saugstad OD: Oxygen radicals and pulmonary damage. Pediatric Pulmonol 1985, 1:167-175.
  • [38]Fu K, Sarras MP Jr, De Lisle RC, Andrews GK: Expression of oxidative stress-responsive genes and cytokine genes during caerulein-induced acute pancreatitis. Am J Physiol 1997, 273:G696-G705.
  • [39]Haddad JJ: Glutathione depletion is associated with augmenting a pro-inflammatory signal: Evidence for an antioxidant/pro-oxidant mechanism regulating cytokines in the alveolar epithelium. Cytokines Cell Mol Therap 2000, 6:177-187.
  • [40]Haddad JJ, Safieh-Garabedian B, Saadé NE, Kanaan SA, Land SC: Chemioxyexcitation (ΔpO2/ROS) dependent release of IL-1β, IL-6 and TNF-α: Evidence of cytokines as oxygen-sensitive mediators in the alveolar epithelium. Cytokine 2001, 13:138-147.
  • [41]Haddad JJ, Safieh-Garabedian B, Saadé NE, Land SC: Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium. J Pharmacol Exp Therap 2001, 296:996-1005.
  • [42]Rouveix B: Clinical pharmacology of cytokines. Eur Cytokine Netw 1997, 8:291-300.
  • [43]Boraschi D, Cifone MG, Falk W, Flad H-D, Tagliabue A, Martin MU: Cytokines in inflammation. Eur Cytokine Netw 1998, 9:205-212.
  • [44]Feldmann M, Brennan FM, Maini RN: Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996, 14:397-440.
  • [45]Dinarello CA: Pro-inflammatory cytokines. Chest 2000, 118:503-508.
  • [46]Nicod LP: Cytokines: Overview. Thorax 1993, 48:660-667.
  • [47]Meister A: Glutathione-ascorbic acid anti-oxidant system in animals. J Biol Chem 1994, 269:9397-9400.
  • [48]Hayes JD, McLellan LI: Glutathione and glutathione-dependent enzymes represent a coordinately regulated defense against oxidative stress. Free Radic Res 1999, 31:273-300.
  • [49]Breuille D, Obled C: Cysteine and glutathione in catabolic states. Nestle Nutr Workshop Ser Clin Perform Programme 2000, 3:173-191.
  • [50]Deplancke B, Gaskins HR: Redox control of the trans-sulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care 2002, 5:85-92.
  • [51]Semenza GL: Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res 2000, 1:159-162.
  • [52]Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001, 13:167-171.
  • [53]Semenza GL: HIF-1 and human disease: One highly involved factor. Genes Dev 2000, 14:1983-1991.
  • [54]Baldwin AS: The NF-κB and IκB proteins: New discoveries and insights. Annu Rev Immunol 1996, 14:649-681.
  • [55]Baldwin AS: The transcription factor NF-κB and human disease. J Clin Invest 2001, 107:3-6.
  • [56]Wang GL, Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995, 270:1230-1237.
  • [57]Sen R, Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986, 46:705-716.
  • [58]Schreck R, Albermann K, Baeuerle PA: Nuclear factor κB: An oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic Res Commun 1992, 17:221-237.
  • [59]Acker H: Cellular oxygen sensors. Ann NY Acad Sci 1994, 718:3-10.
  • [60]Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK: Structure of a biological oxygen sensor: A new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA 1998, 95:15177-15182.
  • [61]Bunn HF, Poyton OR: Oxygen sensing and the molecular adaptation to hypoxia. Physiol Rev 1996, 76:839-885.
  • [62]Li N, Karin M: Is NF-κB the sensor of oxidative stress? FASEB J 1999, 13:1137-1143.
  • [63]Bruick RK, McKnight SL: Transcription enhanced: Oxygen sensing gets a second wind. Science 2002, 295:807-808.
  • [64]Wenger RH, Kvietikova I, Rolfs A, Camenisch G, Gassmann M: Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylation-free hypoxia-inducible factor-1 DNA-binding site. Eur J Biochem 1998, 253:771-777.
  • [65]Wood SM, Wiesener MS, Yeates KM, Okada N, Pugh CW, Maxwell PH, Ratcliffe PJ: Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 α-subunit (HIF-1α): Characterization of HIF-1α-dependent and -independent hypoxia-inducible gene expression. J Biol Chem 1998, 273:8360-8368.
  • [66]Fandrey J, Seydel FP, Siegers CP, Jelkman W: Role of cytochrome P450 in the control of the production of erythropoietin. Life Sci 1990, 47:127-134.
  • [67]Wenger RH, Gassmann M: Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem 1997, 378:609-616.
  • [68]Budinger GR, Duranteau J, Chandel NS, Schumacker PT: Hibernation during hypoxia in cardiomyocytes: Role of mitochondria as the O2 sensor. J Biol Chem 1998, 273:3320-3326.
  • [69]Wilson DF, Mokashi A, Chugh D: The primary oxygen sensor of the cat carotid body is cytochrome c3 of the mitochondrial respiratory chain. Fed Eur Biochem Soc 1994, 351:370-374.
  • [70]Hochachka PW, Buck LT, Doll CJ, Land SC: Unifying theory of hypoxia tolerance: Molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 1996, 93:9493-9498.
  • [71]Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT: Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 1998, 273:11619-11624.
  • [72]Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT: Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 1998, 95:11715-11720.
  • [73]Chandel NS, Schumacker PT: Cells depleted of mitochondrial DNA (ρ0) yield insight into physiological mechanisms. FEBS Lett 1999, 454:173-176.
  • [74]Chandel NS, Schumacker PT: Cellular oxygen sensing by mitochondria: Old questions, new insight. J Appl Physiol 2000, 88:1880-1889.
  • [75]Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: A mechanism of oxygen sensing. J Biol Chem 2000, 275:25130-25138.
  • [76]Waypa GB, Chandel NS, Schumacker PT: Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 2001, 88:1259-1266.
  • [77]Ehleben W, Bolling B, Merten E, Porwol T, Strohmaier AR, Acker H: Cytochromes and oxygen radicals as putative members of the oxygen sensing pathway. Respir Physiol 1998, 114:25-36.
  • [78]Porwol T, Ehleben W, Brand V, Acker H: Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species. Respir Physiol 2001, 128:331-348.
  • [79]Prabhakar NR, Overholt JL: Cellular mechanisms of oxygen sensing at the carotid body: Heme proteins and ion channels. Respir Physiol 2000, 122:209-221.
  • [80]Jiang BH, Semenza GL, Bauer C, Marti HH: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of oxygen tension. Am J Physiol 1996, 271:C1172-C1180.
  • [81]Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM: Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 1997, 272:5375-5381.
  • [82]Salceda S, Caro J: Hypoxia-inducible factor-1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997, 272:22642-22647.
  • [83]Zhu H, Bunn HF: Signal transduction. How do cells sense oxygen? Science 2001, 292:449-451.
  • [84]Maxwell PH, Ratcliffe PJ: Oxygen sensors and angiogenesis. Semin Cell Dev Biol 2002, 13:29-37.
  • [85]Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399:271-275.
  • [86]Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH: Hypoxia inducible factor-α binding and ubiquitination by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 2000, 275:25733-25741.
  • [87]Wykoff CC, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ: Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene 2000, 19:6297-6305.
  • [88]Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim Av, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ: Targeting of HIF-α to the von Hippel-Lindau ubiquitination complex by oxygen-regulated prolyl hydroxylation. Science 2001, 292:468-472.
  • [89]Masson N, William C, Maxwell PH, Pugh CW, Ratcliffe PJ: Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J 2001, 20:5197-5206.
  • [90]Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001, 107:43-54.
  • [91]Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG: Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000, 2:423-427.
  • [92]Ivan M, Kaelin WG: The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev 2001, 11:27-34.
  • [93]Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG: HIF-α targeted for VHL-mediated destruction by proline hydroxylation: Implications for oxygen sensing. Science 2001, 292:464-468.
  • [94]Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG: von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to down-regulate HIF. Hum Mol Genet 2001, 10:1019-1027.
  • [95]Bruick RK, McKnight SL: A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001, 294:1337-1340.
  • [96]Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002, 295:858-861.
  • [97]Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K: Perivenous expression of the mRNA of the three hypoxia-inducible factor α-subunits, HIF-1α, HIF-2α and HIF-3α, in rat liver. Biochem J 2001, 354:531-537.
  • [98]Blancher C, Moore JW, Talks KL, Houlbrook S, Harris AL: Relationship of hypoxia-inducible factor (HIF)-1α and HIF-2α expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 2000, 60:7106-7113.
  • [99]Clifford SC, Maher ER: Von Hippel-Lindau disease: Clinical and molecular perspectives. Adv Cancer Res 2001, 82:85-105.
  • [100]Camenisch G, Stroka DM, Gassmann M, Wenger RH: Attenuation of HIF-1 DNA-binding activity limits hypoxia-inducible endothelin-1 expression. Pflugers Arch 2001, 443:240-249.
  • [101]Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE: Expression of HIF-1α by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 2002, 196:204-212.
  • [102]Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL: Relation of hypoxia-inducible factor-2α (HIF-2α) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res 2002, 62:1326-1329.
  • [103]Haddad JJ, Lauterbach R, Saadé NE, Safieh-Garabedian B, Land SC: α-Melanocyte-related tripeptide, Lys-D-Pro-Val, ameliorates endotoxin-induced NF-κB translocation and activation: Evidence for involvement of an interleukin-1β193–195 receptor antagonism in the alveolar epithelium. Biochem J 2001, 355:29-38.
  • [104]Mercurio F, Manning AM: Multiple signals converging on NF-κB. Curr Opin Cell Biol 1999, 11:226-232.
  • [105]Mercurio F, Zhu H, Murray BW: IKK-1 and IKK-2: Cytokine-activated IκB kinases essential for NF-κB activation. Science 1997, 278:860-866.
  • [106]Carter AB, Knudtson KL, Monick MM, Hunninghake GW: The p38 mitogen-activated protein kinase is required for NF-κB-dependent gene expression: the role of TATA-binding protein (TBP). J Biol Chem 1998, 274:30858-30863.
  • [107]Meister A: Glutathione metabolism and its selective modification. J Biol Chem 1988, 263:17205-17208.
  • [108]Griffith OW, Meister A: Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 1979, 254:7558-7560.
  • [109]Ema A, Hirota K, Mimura J: Molecular mechanisms of transcription activation by HLF and HIF-1α in response to hypoxia: Their stabilization and redox signal induced interaction with CBP/p300. EMBO J 1999, 18:1905-1914.
  • [110]Carrero P, Okamato K, Coumailleau P: Redox-regulated recruitment of the transcriptional activators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α. Mol Cell Biol 2000, 20:402-415.
  • [111]Haddad JJ, Land SC: A non-hypoxic, ROS-sensitive pathway mediates TNF-α-dependent regulation of HIF-1α. FEBS Lett 2001, 505:269-274.
  • [112]Bernard GR: N-Acetylcysteine in experimental and clinical acute lung injury. Am J Med 1991, 91(3C):55S-59S.
  • [113]Brennan P, O'Neill LA: 2-Mercaptoethanol restores the ability of nuclear factor-κB (NF-κB) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrrolidine dithiocarbamate (PDTC): Evidence for oxidation of glutathione in the mechanism of inhibition of NF-κB by PDTC. Biochem J 1996, 320:975-981.
  • [114]Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V: Multiple redox regulation in NF-κB transcription factor activation. Biol Chem 1997, 378:1237-1245.
  • [115]Haddad JJ: L-Buthionine-(S,R)-sulfoximine, an irreversible inhibitor of γ-glutamylcysteine synthetase, augments pro-inflammatory cytokine biosynthesis: Evidence for the implication of an IκB-α/NF-κB insensitive pathway. Eur Cytokine Netw 2001, 12:614-624.
  • [116]Haddad JJ, Land SC, Tarnow-Mordi WO, Zembala M, KowaLczyk D, Lauterbach R: Immunopharmacological potential of selective phosphodiesterase inhibition. II. Evidence for the involvement of an inhibitory-κB/nuclear factor-κB-sensitive pathway in alveolar epithelial cells. J Pharmacol Exp Therap 2002, 300:567-576.
  • [117]Kerr JFR: Shrinkage necrosis: A distinct mode of cellular death. J Pathol 1971, 105:13-20.
  • [118]Kerr JFR, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26:239-257.
  • [119]Wyllie AH, Kerr JFR, Currie AR: Cell death: The significance of apoptosis. Int Rev Cytol 1981, 68:251-305.
  • [120]Ellis RE, Yuan J, Horvitz HR: Mechanisms and functions of cell death. Annu Rev Cell Biol 1991, 7:663-698.
  • [121]Jyonouchi H: Airway epithelium and apoptosis. Apoptosis 1999, 4:407-417.
  • [122]Strasser A, O'Connor L, Dixit VM: Apoptosis signaling. Annu Rev Biochem 2000, 69:217-245.
  • [123]Carmody RJ, Cotter TG: Signaling apoptosis: A radical approach. Redox Rep 2001, 6:77-90.
  • [124]Kaufmann SH, Hengartner MO: Programmed cell death: Alive and well in the new millennium. Trends Cell Biol 2001, 11:526-534.
  • [125]Sutherland LM, Edwards YS, Murray AW: Alveolar type II cell apoptosis. Comp Biochem Physiol A Physiol 2001, 129:267-285.
  • [126]Blatt NB, Glick GD: Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem 2001, 9:1371-1384.
  • [127]Kidd VJ: Proteolytic activities that mediate apoptosis. Annu Rev Physiol 1998, 60:533-573.
  • [128]Depraetere V, Golstein P: Dismantling in cell death: Molecular mechanisms and relationship to caspase activation. Scand J Immunol 1998, 47:523-531.
  • [129]Muzio M: Signaling by proteolysis: Death receptors induce apoptosis. Int J Clin Lab Res 1998, 28:141-147.
  • [130]Cohen GM: Caspases: The executioners of apoptosis. Biochem J 1997, 326:1-16.
  • [131]Tsujimoto Y, Finger LR, Yunis J: Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984, 226:1097-1099.
  • [132]Vaux DL, Cory S, Adams JM: Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988, 335:440-442.
  • [133]Adams JM, Cory S: The Bcl-2 protein family: Arbiters of cell survival. Science 1998, 281:1322-1326.
  • [134]Anuradha CD, Kanno S, Hirano S: Oxidative damage to mitochondria is a preliminary step to caspase-3 activation in fluoride-induced apoptosis in HL-60 cells. Free Radic Biol Med 2001, 31:367-373.
  • [135]Goossens V, Stangé G, Moens K, Pipeleers D, Grooten J: Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1999, 1:285-295.
  • [136]Sastre J, Pallardó FV, Viña J: Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000, 49:427-435.
  • [137]Skulachev VP: Mitochondria in the programmed cell death phenomena; A principle of Biology: "It is better to die than to be wrong.". IUBMB Life 2000, 49:365-373.
  • [138]Szibor M, Richter C, Ghafourifar P: Redox control of mitochondrial functions. Antioxid Redox Signal 2001, 3:515-530.
  • [139]Voehringer DW, Hirschberg DL, Xiao J, Lu Q, Roederer M, Lock CB, Herzenberg LA, Steinman L, Herzenberg A: Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci USA 2000, 97:2680-2685.
  • [140]Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng JI, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997, 275:1129-1132.
  • [141]Mignotte B, Vayessiere JL: Mitochondria and apoptosis. Eur J Biochem 1998, 252:1-15.
  • [142]Jacobson MD: Reactive oxygen species and programmed cell death. Trends Biochem Sci 1996, 21:83-86.
  • [143]Barazzone C, Horowitz S, Donati YR, Rodriguez J, Piguet PF: Oxygen toxicity in mouse lung: Pathways to cell death. Am J Respir Cell Mol Biol 1998, 19:573-581.
  • [144]Ohse T, Nagaoka S, Arakawa Y, Kawakami H, Nakamura K: Cell death by reactive oxygen species generated from water-soluble cationic metalloporphyrins as superoxide dismutase mimics. J Inorg Biochem 2001, 85:201-208.
  • [145]Freeman BA, Panus PC, Matalon S, Buckley BJ, Baker RR: Oxidant injury to the alveolar epithelium: Biochemical and pharmacologic studies. Res Rep Health Eff Inst 1993, 54:1-30.
  • [146]Thannickal VJ, Fanburg BL: Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000, 279:L1005-L1028.
  • [147]Kazzaz JA, Xu J, Palaia TA, Mantell L, Fein AM, Horowitz S: Cellular oxygen toxicity. J Biol Chem 1996, 271:15182-15186.
  • [148]Rahman I, Mulier B, Gilmour PS, Watchorn T, Donadlson K, Jeffery PK, MacNee W: Oxidant-mediated lung epithelial cell tolerance: The role of intracellular glutathione and nuclear factor-κB. Biochem Pharmacol 2001, 62:787-794.
  • [149]Simon HU, Haj-Yehia A, Levi-Schaffer F: Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5:415-418.
  • [150]Giles GI, Tasker KM, Jacob C: Hypothesis: The role of reactive sulfur species in oxidative stress. Free Radic Biol Med 2001, 31:1279-1283.
  • [151]Tan S, Sagara Y, Liu Y, Maher P, Schubert D: The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 1998, 141:1423-1432.
  • [152]Kannan K, Jain SK: Oxidative stress and apoptosis. Pathophysiol 2000, 7:153-163.
  • [153]Buttke TM, Sandstorm PA: Oxidative stress as a mediator of apoptosis. Immunol Today 1994, 15:7-10.
  • [154]Kehrer JP: Cause-effect of oxidative stress and apoptosis. Teratology 2000, 62:235-236.
  • [155]Ignarro LJ: Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 1991, 41:485-490.
  • [156]O'Reilly MA, Staversky RJ, Watkins RH, Maniscalco WM: Accumulation of p21Cip1/WAF1 during hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 1998, 19:777-785.
  • [157]O'Reilly MA, Staversky RJ, Stripp BR, Finkelstein JN: Exposure to hyperoxia induces p53 expression in mouse lung epithelium. Am J Respir Cell Mol Biol 1998, 18:43-50.
  • [158]Bedi A, Mookerjee B: Biological significance and molecular mechanisms of p53-induced apoptosis. Apoptosis 1998, 3:237-244.
  • [159]Méplan C, Richard MJ, Hainaut P: Redox signaling and transition metals in the control of the p53 pathway. Biochem Pharmacol 2000, 59:25-33.
  • [160]Hampton MB, Fadeel B, Orrenius S: Redox regulation of the caspases during apoptosis. Ann New Acad Sci 1998, 854:328-335.
  • [161]Hall AG: The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 1999, 29:238-245.
  • [162]Haselton PS, Roberts TE: Adult respiratory distress syndrome: An update. Histopathol 1999, 34:285-294.
  • [163]Haddad JJ, Land SC: Amiloride blockades lipopolysaccharide-induced cytokine biosynthesis in an IκB-α/NF-κB-dependent mechanism: Evidence for the amplification of an anti-inflammatory pathway in the alveolar epithelium. Am J Respir Cell Mol Biol 2002, 26:114-126.
  • [164]Haddad JJ, Land SC, Tarnow-Mordi WO, Zembala M, KowaLczyk D, Lauterbach R: Immunopharmacological potential of selective phosphodiesterase inhibition. I. Differential regulation of lipopolysaccharide-mediated pro-inflammatory cytokine (interleukin-6 and tumor necrosis factor-α) biosynthesis in alveolar epithelial cells. J Pharmacol Exp Therap 2002, 300:559-566.
  • [165]DeForge LE, Fantone JC, Kenney JS, Remick DG: Oxygen radical scavengers selectively inhibit interleukin-8 production in human whole blood. J Clin Invest 1992, 90:2123-2129.
  • [166]Desmarquest P, Chadelat K, Corroyer S: Effect of hyperoxia on human macrophage cytokine response. Respir Med 1998, 92:951-960.
  • [167]Wang Z, Malmberg P, Elk A: Swine dust induces cytokine secretion from human epithelial cells and alveolar macrophages. Clin Exp Immunol 1999, 115:6-12.
  • [168]Yoshida Y, Maruyama M, Fujita T: Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells. Am J Physiol 1999, 276:L900-L908.
  • [169]Meier B, Radeke HH, Selle S: Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-α. Biochem J 1989, 263:539-545.
  • [170]Luster MI, Simeonova PP: Asbestos induces inflammatory cytokines in the lung through redox sensitive transcription factors. Toxicol Lett 1998, 102–103:271-275.
  • [171]Cantin AM, Hubbard RC, Crystal RG: Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 1989, 139:370-372.
  • [172]Bunnell E, Pacht ER: Oxidized glutathione is increased in the alveolar fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1993, 148:1174-1178.
  • [173]Saugstad OD: Bronchopulmonary dysplasia and oxidative stress: Are we closer to an understanding of the pathogenesis of BPD. Acta Pediatric 1997, 86:1277-1282.
  • [174]Roum JH, Behld R, McElvancy NG: Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993, 75:2419-2424.
  • [175]Haddad JJ, Saadé NE, Safieh-Garabedian B: Redox regulation of TNF-α biosynthesis: Augmentation by irreversible inhibition of γ-glutamylcysteine synthetase and the involvement of an IκB-α/NF-κB-independent pathway in alveolar epithelial cells. Cell Signal 2002, 14:211-218.
  • [176]Haddad JJ, Land SC: Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-α biosynthesis. Br J Pharmacol 2002, 135:520-536.
  • [177]Haddad JJ: The involvement of L-γ-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPKp38-dependent regulation of pro-inflammatory cytokine production. Biochem Pharmacol 2002, 63:305-320.
  • [178]Rovin BH, Dickerson JA, Tan LC, Fassler J: Modulation of IL-1-induced chemokine expression in human mesangial cells through alterations in redox status. Cytokine 1997, 9:178-186.
  • [179]Jeannin P, Delneste Y, Lecoanet-Henchoz S: Thiols decrease human interleukin (IL)-4 production and IL-4-induced immunoglobulin synthesis. J Exp Med 1995, 182:1785-1792.
  • [180]Gosset P, Wallaert B, Tonnel AB, Fourneau C: Thiol regulation of the production of TNF-α, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 1999, 14:98-105.
  • [181]Neuschwander-Tetri BA, Bellezzo JM, Britton RS: Thiol regulation of endotoxin-induced release of tumor necrosis factor α from isolated rat Kupffer cells. Biochem J 1996, 320:1005-1010.
  • [182]Barrett EG, Johnston C, Oberdörster G, Finkelstein JN: Antioxidant treatment attenuates cytokine and chemokine levels in murine macrophages following silica exposure. Toxicol Appl Pharmacol 1999, 158:211-220.
  • [183]Tsuji F, Miyake Y, Aono H: Effects of bucillamine and N-acetyl-L-cysteine on cytokine production and collagen-induced arthritis (CIA). Clin Exp Immunol 1999, 115:26-31.
  • [184]Haddad JJ, Land SC, Saadé NE, Safieh-Garabedian B: Immunomodulatory potential of thymulin-Zn2+ in the alveolar epithelium: Amelioration of endotoxin-induced cytokine release and partial amplification of a cytoprotective IL-10-sensitive pathway. Biochem Biophys Res Commun 2000, 274:500-505.
  • [185]Haddad JJ, Collett A, Land SC, Olver RE, Wilson SM: NF-κB blockade reduces the oxygen-evoked rise in Na+ conductance in fetal alveolar cells. Biochem Biophys Res Commun 2001, 281:987-992.
  • [186]Baines DL, Ramminger SJ, Collett A, Haddad JJ, Best OG, Land SC, Olver RE, Wilson SM: Oxygen-evoked Na+ transport in rat fetal distal lung epithelial cells. J Physiol 2001, 532:105-113.
  • [187]Haddad JJ, Safieh-Garabedian B, Saadé NE, Land SC: The biphasic immunoregulation of pyrimidylpiperazine (Y-40138) is IL-10 sensitive and requires NF-κB targeting in the alveolar epithelium. Br J Pharmacol 2001, 133:49-60.
  • [188]Haddad JJ, Land SC: Nuclear factor-κB blockade attenuates but does not abrogate lipopolysaccharide-dependent tumor necrosis factor-α biosynthesis in alveolar epithelial cells. Biochem Biophys Res Commun 2001, 285:267-272.
  • [189]Haddad JJ: VX-745: Vertex Pharmaceuticals. Curr Opin Investig Drugs 2001, 2:1070-1076.
  • [190]Haddad JJ, Land SC: Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid Redox Signal 2002, 4:179-193.
  • [191]Haddad JJ, Fahlman CS: Nuclear factor-κB-independent regulation of lipopolysaccharide-mediated interleukin-6 biosynthesis. Biochem Biophys Res Commun 2002, 291:1045-1051.
  • [192]Hadad : Recombinant TNF-α mediated regulation of the IκB-α/NF-κB signaling pathway: Evidence for the enhancement of pro- and anti-inflammatory cytokines in alveolar epithelial cells. Cytokine 2002, 17:301-310.
  文献评价指标  
  下载次数:104次 浏览次数:38次