期刊论文详细信息
Plant Methods
High-level diterpene production by transient expression in Nicotiana benthamiana
Alain Tissier1  Kathleen Brückner1 
[1] Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle-Saale, Germany
关键词: Nicotiana benthamiana;    Transient protein expression;    Agrobacterium;    Diterpene synthase;   
Others  :  805577
DOI  :  10.1186/1746-4811-9-46
 received in 2013-10-08, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

Background

Characterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis.

Results

Agrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2.

Conclusion

With this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants.

【 授权许可】

   
2013 Brückner and Tissier; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708081326871.pdf 461KB PDF download
Figure 3. 39KB Image download
Figure 2. 67KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Guerra-Bubb J, Croteau R, Williams RM: The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep 2012, 29:683-696.
  • [2]Bohlmann J, Keeling CI: Terpenoid biomaterials. Plant J 2008, 54:656-669.
  • [3]Tounekti T, Munne-Bosch S: Enhanced phenolic diterpenes antioxidant levels through non-transgenic approaches. Critic Rev Plant Sci 2012, 31:505-519.
  • [4]Degenhardt J, Kollner TG, Gershenzon J: Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70:1621-1637.
  • [5]Koeksal M, Jin Y, Coates RM, Croteau R, Christianson DW: Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 2011, 469:116-120.
  • [6]Huang EX, Huang QL, Wildung MR, Croteau R, Scott AI: Overproduction, in Escherichia coli, of soluble taxadiene synthase, a key enzyme in the taxol biosynthetic pathway. Prot Express Purif 1998, 13:90-96.
  • [7]Hall DE, Zerbe P, Jancsik S, Quesada AL, Dullat H, Madilao LL, Yuen M, Bohlmann J: Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases. Plant Physiol 2013, 161:600-616.
  • [8]Sallaud C, Giacalone C, Toepfer R, Goepfert S, Bakaher N, Roesti S, Tissier A: Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 2012, 72:1-17.
  • [9]Hill AM, Cane DE, Mau CJD, West CA: High level expression of Ricinus communis casbene synthase in Escherichia coli and characterization of the recombinant enzyme. Arch Biochem Biophys 1996, 336:283-289.
  • [10]Reiling KK, Yoshikuni Y, Martin VJJ, Newman J, Bohlmann J, Keasling JD: Mono and diterpene production in Escherichia coli. Biotechnol Bioeng 2004, 87:200-212.
  • [11]Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, et al.: Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 2012, 134:3234-3241.
  • [12]Muntendam R, Melillo E, Ryden A, Kayser O: Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts. Appl Microbiol Biotechnol 2009, 84:1003-1019.
  • [13]Pitera DJ, Paddon CJ, Newman JD, Keasling JD: Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 2007, 9:193-207.
  • [14]Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD: Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 2009, 11:13-19.
  • [15]Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD: High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 2009, 4:e4489.
  • [16]Guo J, Zhou YJ, Hillwig ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, et al.: CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc Natl Acad Sci U S A 2013, 110:12108-12113.
  • [17]Dai Z, Liu Y, Huang L, Zhang X: Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2012, 109:2845-2853.
  • [18]Caniard A, Zerbe P, Legrand S, Cohade A, Valot N, Magnard JL, Bohlmann J, Legendre L: Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol 2012, 12:119. BioMed Central Full Text
  • [19]Hamberger B, Ohnishi T, Seguin A, Bohlmann J: Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiol 2011, 157:1677-1695.
  • [20]Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Rutledge EJ, Fortman JL, Johnson HE, Anderson JV, Keasling JD: Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 2010, 71:1466-1473.
  • [21]Engels B, Dahm P, Jennewein S: Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 2008, 10:201-206.
  • [22]Pateraki I, Kanellis AK: Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase. Phytochemistry 2008, 69:1641-1652.
  • [23]Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, et al.: High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496:528-532.
  • [24]Goodin MM, Zaitlin D, Naidu RA, Lommel SA: Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant-Microbe Interact 2008, 21:1015-1026.
  • [25]Kapila J, DeRycke R, VanMontagu M, Angenon G: An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 1997, 124:227.
  • [26]Voinnet O, Rivas S, Mestre P, Baulcombe D: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 2003, 33:949-956.
  • [27]van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J: Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 2010, 5:e14222.
  • [28]Kanagarajan S, Muthusamy S, Gliszczynska A, Lundgren A, Brodelius PE: Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. Plant Cell Rep 2012, 31:1309-1319.
  • [29]Green SA, Chen XY, Matich AJ: In planta transient expression analysis of monoterpene synthases. In Natural Product Biosynthesis by Microorganisms and Plants, Part A. Methods in Enzymology. Volume 515. Edited by Hopwood DA. San Diego: Elsevier Academic Press; 2012:43-61.
  • [30]Liu Q, Majdi M, Cankar K, Goedbloed M, Charnikhova T, Verstappen FWA, de Vos RCH, Beekwilder J, van der Krol S, Bouwmeester HJ: Reconstitution of the costunolide biosynthetic pathway in yeast and nicotiana benthamiana. PLoS ONE 2011, 6:e23255.
  • [31]Mugford ST, Qi X, Bakht S, Hill L, Wegel E, Hughes RK, Papadopoulou K, Melton R, Philo M, Sainsbury F, et al.: A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell 2009, 21:2473-2484.
  • [32]Geisler K, Hughes RK, Sainsbury F, Lomonossoff GP, Rejzek M, Fairhurst S, Olsen C-E, Motawia MS, Melton RE, Hemmings AM, et al.: Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci U S A 2013, 110:E3360-E3367.
  • [33]Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A: Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 2010, 73:673-685.
  • [34]Mau CJD, West CA: Cloning of casbene synthase cDNA - evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci U S A 1994, 91:8497-8501.
  • [35]Schepmann HG, Pang JH, Matsuda SPT: Cloning and characterization of Ginkgo biloba levopimaradiene synthase, which catalyzes the first committed step in ginkgolide biosynthesis. Arch Biochem Biophys 2001, 392:263-269.
  • [36]Ro DK, Bohlmann J: Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry 2006, 67:1572-1578.
  • [37]Neau E, Cartayrade A, Balz JP, Carde JP, Walter J: Ginkgolide and bilobalide biosynthesis in Ginkgo biloba.2. Identification of a possible intermediate compound by using inhibitors of cytochrome P-450-dependent oxygenases. Plant Physiol Biochem 1997, 35:869-879.
  • [38]Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ: Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 2010, 107:13654-13659.
  • [39]Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM: Programming cells by multiplex genome engineering and accelerated evolution. Nature 2009, 460:894-898.
  • [40]Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G: Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330:70-74.
  • [41]Botella-Pavia P, Besumbes O, Phillips MA, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M: Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J 2004, 40:188-199.
  • [42]Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L: Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 2011, 13:319-327.
  • [43]Paetzold H, Garms S, Bartram S, Wieczorek J, Uros-Gracia E-M, Rodriguez-Concepcion M, Boland W, Strack D, Hause B, Walter MH: The isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol Plant 2010, 3:904-916.
  • [44]Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, et al.: The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 2009, 21:4002-4017.
  • [45]Slocombe SP, Schauvinhold I, McQuinn RP, Besser K, Welsby NA, Harper A, Aziz N, Li Y, Larson TR, Giovannoni J, et al.: Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in solanum pennellii and nicotiana benthamiana. Plant Physiol 2008, 148:1830-1846.
  • [46]Zerbe P, Hamberger B, Yuen MM, Chiang A, Sandhu HK, Madilao LL, Nguyen A, Bach SS, Bohlmann J: Gene discovery of modular diterpene metabolism in nonmodel systems. Plant Physiol 2013, 162:1073-1091.
  • [47]Xiao Y, Savchenko T, Baidoo EE, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 2012, 149:1525-1535.
  • [48]Funk C, Croteau R: Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Arch Biochem Biophys 1994, 308:258-266.
  • [49]Ro DK, Arimura G, Lau SY, Piers E, Bohlmann J: Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci U S A 2005, 102:8060-8065.
  • [50]Zi J, Peters RJ: Characterization of CYP76AH4 clarifies phenolic diterpenoid biosynthesis in the Lamiaceae. Org Biomol Chem 2013, 11:7650-7652.
  • [51]Engler C, Kandzia R, Marillonnet S: A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 2008, 3:e3647.
  • [52]Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S: A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 2011, 6:e16765.
  • [53]Engler C, Marillonnet S: Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 2011, 729:167-181.
  • [54]Koncz C, Schell J: The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 1986, 204:383-396.
  文献评价指标  
  下载次数:28次 浏览次数:2次