期刊论文详细信息
Particle and Fibre Toxicology
Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens
D. Timothy J. Littlewood2  Tomáš Scholz1  Aneta Kostadinova1  Jan Brabec1 
[1] Institute of Parasitology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic;Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
关键词: Phylogeny;    Illumina next-generation sequencing;    Ribosomal RNA;    Mitochondrial genome;    Fish pathogens;    Diplostomum (Platyhelminthes: Trematoda);   
Others  :  1224178
DOI  :  10.1186/s13071-015-0949-4
 received in 2015-05-12, accepted in 2015-06-11,  发布年份 2015
PDF
【 摘 要 】

Background

The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology.

Methods

Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared.

Results

We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its ‘barcode’ region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida.

Conclusions

Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and large-scale molecular epidemiology and disease ecology studies based on the most accessible life-cycle stages of eye flukes.

【 授权许可】

   
2015 Brabec et al.

【 预 览 】
附件列表
Files Size Format View
20150908101252871.pdf 1393KB PDF download
Fig. 3. 78KB Image download
Fig. 2. 44KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Chappell LH, Hardie LJ, Secombes CJ. Diplostomiasis: the disease and host-parasite interactions. In: Parasitic diseases of fish. Pike AW, Lewis JW, editors. Samara Publishing Ltd, Tresaith, Dyfed, UK; 1994: p.59-86.
  • [2]Rauch G, Kalbe M, Reusch TBH. How a complex life cycle can improve a parasite’s sex life. J Evol Biol. 2005; 18:1069-75.
  • [3]Louhi K-R, Karvonen A, Rellstab C, Jokela J. Is the population genetic structure of complex life cycle parasites determined by the geographic range of the most motile host? Infect Genet Evol. 2010; 10:1271-7.
  • [4]Kalbe M, Kurtz J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology. 2006; 132:105-16.
  • [5]Karvonen A. Chapter 15. Diplostomum spathaceum and related species. In: Fish parasites: pathobiology and protection. Woo PTK, Buchmann K, editors. CAB International, Wallingford, UK; 2012: p.260-9.
  • [6]Voutilainen A, Valdez H, Karvonen A, Kortet R, Kuukka H, Peuhkuri N et al.. Infectivity of trematode eye flukes in farmed salmonid fish–effects of parasite and host origins. Aquaculture. 2009; 293:108-12.
  • [7]Seppälä O, Karvonen A, Valtonen ET. Eye fluke-induced cataracts in natural fish populations: is there potential for host manipulation? Parasitology. 2011; 138:209-14.
  • [8]Georgieva S, Soldánová M, Pérez-del-Olmo A, Dangel DR, Sitko J, Sures B et al.. Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. Int J Parasitol. 2013; 43:57-72.
  • [9]Niewiadomska K, Laskowski Z. Systematic relationships among six species of Diplostomum Nordmann, 1832 (Digenea) based on morphological and molecular data. Acta Parasitol. 2002; 47:20-8.
  • [10]Galazzo DE, Dayanandan S, Marcogliese DJ, McLaughlin JD. Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can J Zool. 2002; 80:2207-17.
  • [11]Rellstab C, Louhi K-R, Karvonen A, Jokela J. Analysis of trematode parasite communities in fish eye lenses by pyrosequencing of naturally pooled DNA. Infect Genet Evol. 2011; 11:1276-86.
  • [12]Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ. Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour. 2009; 9:75-82.
  • [13]Locke SA, McLaughlin JD, Dayanandan S, Marcogliese DJ. Diversity and specificity in Diplostomum spp. metacercariae in freshwater fishes revealed by cytochrome c oxidase I and internal transcribed spacer sequences. Int J Parasitol. 2010; 40:333-43.
  • [14]Blasco-Costa I, Faltýnková A, Georgieva S, Skírnisson K, Scholz T, Kostadinova A. Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int J Parasitol. 2014; 44:703-15.
  • [15]Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007; 134:713-22.
  • [16]Jia W-Z, Yan H-B, Guo A-J, Zhu X-Q, Wang Y-C, Shi W-G et al.. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics. 2010; 11:447. BioMed Central Full Text
  • [17]Webster BL, Littlewood DTJ. Mitochondrial gene order change in Schistosoma (Platyhelminthes: Digenea: Schistosomatidae). Int J Parasitol. 2012; 42:313-21.
  • [18]Hahn C, Bachmann L, Chevreux B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads - a baiting and iterative mapping approach. Nucleic Acids Res. 2013; 41:e129.
  • [19]Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al.. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28:1647-9.
  • [20]Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G et al.. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013; 69:313-9.
  • [21]Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005; 33:W686-9.
  • [22]Laslett D, Canbäck B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008; 24:172-5.
  • [23]Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30:772-80.
  • [24]Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A et al.. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013; 4:914-9.
  • [25]Kane RA, Rollinson D. Comparison of the intergenic spacers and 3′ end regions of the large subunit (28S) ribosomal RNA gene from three species of Schistosoma. Parasitology. 1998; 117:235-42.
  • [26]Zhao G-H, Blair D, Li X-Y, Li J, Lin R-Q, Zou F-C et al.. The ribosomal intergenic spacer (IGS) region in Schistosoma japonicum: structure and comparisons with related species. Infect Genet Evol. 2011; 11:610-7.
  • [27]Mullineux S-T, Lafontaine DLJ. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie. 2012; 94:1521-32.
  • [28]Telford MJ, Herniou EA, Russell RB, Littlewood DTJ. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc Natl Acad Sci U S A. 2000; 97:11359-64.
  • [29]Rota-Stabelli O, Yang Z, Telford MJ. MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies. Mol Phylogenet Evol. 2009; 52:268-72.
  • [30]Adachi J, Hasegawa M. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol. 1996; 42:459-68.
  • [31]Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30:1312-3.
  • [32]Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? J Comput Biol. 2010; 17:337-54.
  • [33]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994; 3:294-9.
  • [34]Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic Neodermata. Genome Biol Evol. 2014; 6:1105-17.
  • [35]Zarowiecki MZ, Huyse T, Littlewood DTJ. Making the most of mitochondrial genomes - markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: Digenea). Int J Parasitol. 2007; 37:1401-18.
  • [36]Jia W, Yan H, Lou Z, Ni X, Dyachenko V, Li H et al.. Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop. 2012; 123:154-63.
  • [37]Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012; 21:2045-50.
  • [38]Huver JR, Koprivnikar J, Johnson PTJ, Whyard S. Development and application of an eDNA methods to detect and quantify a pathogenic parasite in aquatic ecosystems. Ecol Appl. (in press).
  • [39]Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol. 2003; 33:733-55.
  • [40]Cribb TH, Bray RA, Olson PD, Littlewood DTJ. Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasit. 2003; 54:197-254.
  • [41]Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol. 2006; 39:452-67.
  文献评价指标  
  下载次数:50次 浏览次数:16次