期刊论文详细信息
Molecular Pain
Inhibition of tetrodotoxin-resistant sodium current in dorsal root ganglia neurons mediated by D1/D5 dopamine receptors
Michelino Puopolo2  Mario J Rebecchi1  Elham Safaie3  William Galbavy1 
[1] Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY 11794, USA;Department of Anesthesiology, Stony Brook Medicine, Health Sciences Center L4-072, Stony Brook, NY 11794, USA;Department of Radiology, Stony Brook Medicine, Stony Brook, NY 11794, USA
关键词: Tetrodotoxin-resistant sodium channels;    D1/D5 dopamine receptors;    Dorsal root ganglia;   
Others  :  862097
DOI  :  10.1186/1744-8069-9-60
 received in 2013-09-04, accepted in 2013-11-22,  发布年份 2013
PDF
【 摘 要 】

Background

Dopaminergic fibers originating from area A11 of the hypothalamus project to different levels of the spinal cord and represent the major source of dopamine. In addition, tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines, is expressed in 8-10% of dorsal root ganglia (DRG) neurons, suggesting that dopamine may be released in the dorsal root ganglia. Dopamine has been shown to modulate calcium current in DRG neurons, but the effects of dopamine on sodium current and on the firing properties of small DRG neurons are poorly understood.

Results

The effects of dopamine and dopamine receptor agonists were tested on the tetrodotoxin-resistant (TTX-R) sodium current recorded from acutely dissociated small (diameter ≤ 25 μm) DRG neurons. Dopamine (20 μM) and SKF 81297 (10 μM) caused inhibition of TTX-R sodium current in small DRG neurons by 23% and 37%, respectively. In contrast, quinpirole (20 μM) had no effects on the TTX-R sodium current. Inhibition by SKF 81297 of the TTX-R sodium current was not affected when the protein kinase A (PKA) activity was blocked with the PKA inhibitory peptide (6–22), but was greatly reduced when the protein kinase C (PKC) activity was blocked with the PKC inhibitory peptide (19–36), suggesting that activation of D1/D5 dopamine receptors is linked to PKC activity. Expression of D1and D5 dopamine receptors in small DRG neurons, but not D2 dopamine receptors, was confirmed by Western blotting and immunofluorescence analysis. In current clamp experiments, the number of action potentials elicited in small DRG neurons by current injection was reduced by ~ 30% by SKF 81297.

Conclusions

We conclude that activation of D1/D5 dopamine receptors inhibits TTX-R sodium current in unmyelinated nociceptive neurons and dampens their intrinsic excitability by reducing the number of action potentials in response to stimulus. Increasing or decreasing levels of dopamine in the dorsal root ganglia may serve to adjust the sensitivity of nociceptors to noxious stimuli.

【 授权许可】

   
2013 Galbavy et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725011038729.pdf 2673KB PDF download
87KB Image download
45KB Image download
41KB Image download
61KB Image download
54KB Image download
81KB Image download
74KB Image download
62KB Image download
73KB Image download
【 图 表 】

【 参考文献 】
  • [1]Kostyuk PG, Veselovsky NS, Tsyndrenko AY: Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents. Neuroscience 1981, 6(12):2423-2430.
  • [2]Caffrey JM, Eng DL, Black JA, Waxman SG, Kocsis JD: Three types of sodium channels in adult rat dorsal root ganglion neurons. Brain Res 1992, 592(1–2):283-297.
  • [3]Roy ML, Narahashi T: Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci 1992, 12(6):2104-2111.
  • [4]Elliott AA, Elliott JR: Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J Physiol 1993, 463:39-56.
  • [5]Akopian AN, Sivilotti L, Wood JN: A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 1996, 379(6562):257-262.
  • [6]Dib-Hajj SD, Tyrrell L, Black JA, Waxman SG: NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 1998, 95(15):8963-8968.
  • [7]Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG: A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 1999, 19(24):RC43.
  • [8]Tate S, Benn S, Hick C, Trezise D, John V, Mannion RJ, Costigan M, Plumpton C, Grose D, Gladwell Z, et al.: Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nature Neurosci 1998, 1(8):653-655.
  • [9]Ho C, O’Leary ME: Single-cell analysis of sodium channel expression in dorsal root ganglion neurons. Mol Cell Neurosci 2011, 46(1):159-166.
  • [10]Ritter AM, Mendell LM: Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J Neurophysiol 1992, 68(6):2033-2041.
  • [11]Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG, Lawson SN: The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 2002, 22(17):7425-7433.
  • [12]Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN: Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na + channel alpha subunit protein. J Physiol 2003, 546(Pt 2):565-576.
  • [13]Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003, 550(Pt 3):739-752.
  • [14]Rush AM, Cummins TR, Waxman SG: Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 2007, 579(Pt 1):1-14.
  • [15]Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, et al.: The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 1999, 2(6):541-548.
  • [16]Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW: Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 2007, 447(7146):855-858.
  • [17]Porreca F, Lai J, Bian D, Wegert S, Ossipov MH, Eglen RM, Kassotakis L, Novakovic S, Rabert DK, Sangameswaran L, et al.: A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proc Natl Acad Sci U S A 1999, 96(14):7640-7644.
  • [18]Lai J, Gold MS, Kim CS, Bian D, Ossipov MH, Hunter JC, Porreca F: Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 2002, 95(1–2):143-152.
  • [19]Gold MS, Weinreich D, Kim CS, Wang R, Treanor J, Porreca F, Lai J: Redistribution of Na(V)1.8 in uninjured axons enables neuropathic pain. J Neurosci 2003, 23(1):158-166.
  • [20]Yoshimura N, Seki S, Novakovic SD, Tzoumaka E, Erickson VL, Erickson KA, Chancellor MB, de Groat WC: The involvement of the tetrodotoxin-resistant sodium channel Na(v)1.8 (PN3/SNS) in a rat model of visceral pain. J Neurosci 2001, 21(21):8690-8696.
  • [21]Laird JM, Souslova V, Wood JN, Cervero F: Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 2002, 22(19):8352-8356.
  • [22]Renganathan M, Cummins TR, Waxman SG: Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 2001, 86(2):629-640.
  • [23]Blair NT, Bean BP: Roles of tetrodotoxin (TTX)-sensitive Na + current, TTX-resistant Na + current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 2002, 22(23):10277-10290.
  • [24]Skagerberg G, Bjorklund A, Lindvall O, Schmidt RH: Origin and termination of the diencephalo-spinal dopamine system in the rat. Brain Res Bull 1982, 9(1–6):237-244.
  • [25]Skagerberg G, Lindvall O: Organization of diencephalic dopamine neurones projecting to the spinal cord in the rat. Brain Res 1985, 342(2):340-351.
  • [26]Barraud Q, Obeid I, Aubert I, Barriere G, Contamin H, McGuire S, Ravenscroft P, Porras G, Tison F, Bezard E, et al.: Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One 2010, 5(10):e13306.
  • [27]Holstege JC, Van Dijken H, Buijs RM, Goedknegt H, Gosens T, Bongers CM: Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J Comp Neurol 1996, 376(4):631-652.
  • [28]Ridet JL, Sandillon F, Rajaofetra N, Geffard M, Privat A: Spinal dopaminergic system of the rat: light and electron microscopic study using an antiserum against dopamine, with particular emphasis on synaptic incidence. Brain Res 1992, 598(1–2):233-241.
  • [29]Zhu H, Clemens S, Sawchuk M, Hochman S: Expression and distribution of all dopamine receptor subtypes (D(1)-D(5)) in the mouse lumbar spinal cord: a real-time polymerase chain reaction and non-autoradiographic in situ hybridization study. Neuroscience 2007, 149(4):885-897.
  • [30]Xie GX, Jones K, Peroutka SJ, Palmer PP: Detection of mRNAs and alternatively spliced transcripts of dopamine receptors in rat peripheral sensory and sympathetic ganglia. Brain Res 1998, 785(1):129-135.
  • [31]Peiser C, Trevisani M, Groneberg DA, Dinh QT, Lencer D, Amadesi S, Maggiore B, Harrison S, Geppetti P, Fischer A: Dopamine type 2 receptor expression and function in rodent sensory neurons projecting to the airways. Am J Physiol Lung Cell Mol Physiol 2005, 289(1):L153-L158.
  • [32]Jensen TS, Yaksh TL: Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res 1984, 296(2):285-293.
  • [33]Barasi S, Duggal KN: The effect of local and systemic application of dopaminergic agents on tail flick latency in the rat. Eur J Pharmacol 1985, 117(3):287-294.
  • [34]Barasi S, Ben-Sreti MM, Clatworthy AL, Duggal KN, Gonzalez JP, Robertson J, Rooney KF, Sewell RD: Dopamine receptor-mediated spinal antinociception in the normal and haloperidol pretreated rat: effects of sulpiride and SCH 23390. Br J Pharmacol 1987, 90(1):15-22.
  • [35]Fleetwood-Walker SM, Hope PJ, Mitchell R: Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurones. J Physiol 1988, 399:335-348.
  • [36]Gao X, Zhang Y, Wu G: Effects of dopaminergic agents on carrageenan hyperalgesia after intrathecal administration to rats. Eur J Pharmacol 2001, 418(1–2):73-77.
  • [37]Cobacho N, De la Calle JL, Gonzalez-Escalada JR, Paino CL: Levodopa analgesia in experimental neuropathic pain. Brain Res Bull 2010, 83(6):304-309.
  • [38]Tamae A, Nakatsuka T, Koga K, Kato G, Furue H, Katafuchi T, Yoshimura M: Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J Physiol 2005, 568(Pt 1):243-253.
  • [39]Taniguchi W, Nakatsuka T, Miyazaki N, Yamada H, Takeda D, Fujita T, Kumamoto E, Yoshida M: In vivo patch-clamp analysis of dopaminergic antinociceptive actions on substantia gelatinosa neurons in the spinal cord. Pain 2011, 152(1):95-105.
  • [40]Price J, Mudge AW: A subpopulation of rat dorsal root ganglion neurones is catecholaminergic. Nature 1983, 301(5897):241-243.
  • [41]Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, et al.: The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011, 147(7):1615-1627.
  • [42]Lou S, Duan B, Vong L, Lowell BB, Ma Q: Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 2013, 33(3):870-882.
  • [43]Brumovsky PR, La JH, McCarthy CJ, Hokfelt T, Gebhart GF: Dorsal root ganglion neurons innervating pelvic organs in the mouse express tyrosine hydroxylase. Neuroscience 2012, 223:77-91.
  • [44]Brumovsky P, Villar MJ, Hokfelt T: Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Exp Neurol 2006, 200(1):153-165.
  • [45]Philippe E, Zhou C, Audet G, Geffard M, Gaulin F: Expression of dopamine by chick primary sensory neurons and their related targets. Brain Res Bull 1993, 30(3–4):227-230.
  • [46]Huang LY, Neher E: Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron 1996, 17(1):135-145.
  • [47]Zhang X, Chen Y, Wang C, Huang LY: Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 2007, 104(23):9864-9869.
  • [48]Rozanski GM, Kim H, Li Q, Wong FK, Stanley EF: Slow chemical transmission between dorsal root ganglion neuron somata. Eur J Neurosci 2012, 36(10):3314-3321.
  • [49]Zhang C, Zhou Z: Ca(2+)-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat Neurosci 2002, 5(5):425-430.
  • [50]Marchetti C, Carbone E, Lux HD: Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Arch Eur J Physiol 1986, 406(2):104-111.
  • [51]Formenti A, Arrigoni E, Mancia M: Two distinct modulatory effects on calcium channels in adult rat sensory neurons. Biophys J 1993, 64(4):1029-1037.
  • [52]Formenti A, Martina M, Plebani A, Mancia M: Multiple modulatory effects of dopamine on calcium channel kinetics in adult rat sensory neurons. J Physiol 1998, 509(Pt 2):395-409.
  • [53]Gallagher JP, Inokuchi H, Shinnick-Gallagher P: Dopamine depolarisation of mammalian primary afferent neurones. Nature 1980, 283(5749):770-772.
  • [54]Abramets II, Samoilovich IM: Analysis of two types of dopaminergic responses of neurons of the spinal ganglia of rats. Neurosci Behav Physiol 1991, 21(5):435-440.
  • [55]Molokanova EA, Tamarova ZA: The effects of dopamine and serotonin on rat dorsal root ganglion neurons: an intracellular study. Neuroscience 1995, 65(3):859-867.
  • [56]Blair NT, Bean BP: Role of tetrodotoxin-resistant Na + current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci 2003, 23(32):10338-10350.
  • [57]Schiffmann SN, Lledo PM, Vincent JD: Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A. J Physiol 1995, 483(Pt 1):95-107.
  • [58]Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA: Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 1997, 17(19):7330-7338.
  • [59]Maurice N, Tkatch T, Meisler M, Sprunger LK, Surmeier DJ: D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J Neurosci 2001, 21(7):2268-2277.
  • [60]England S, Bevan S, Docherty RJ: PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J Physiol 1996, 495(Pt 2):429-440.
  • [61]Gold MS, Levine JD, Correa AM: Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci 1998, 18(24):10345-10355.
  • [62]Fitzgerald EM, Okuse K, Wood JN, Dolphin AC, Moss SJ: cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol 1999, 516(Pt 2):433-446.
  • [63]Baker MD: Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na + current in rat and mouse sensory neurones. J Physiol 2005, 567(Pt 3):851-867.
  • [64]Wu DF, Chandra D, McMahon T, Wang D, Dadgar J, Kharazia VN, Liang YJ, Waxman SG, Dib-Hajj SD, Messing RO: PKCepsilon phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice. J Clin Invest 2012, 122(4):1306-1315.
  • [65]Scroggs RS: Up-regulation of low-threshold tetrodotoxin-resistant Na + current via activation of a cyclic AMP/protein kinase A pathway in nociceptor-like rat dorsal root ganglion cells. Neuroscience 2011, 186:13-20.
  • [66]Hayashida Y, Ishida AT: Dopamine receptor activation can reduce voltage-gated Na + current by modulating both entry into and recovery from inactivation. J Neurophysiol 2004, 92(5):3134-3141.
  • [67]Cardenas CG, Del Mar LP, Scroggs RS: Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J Neurophysiol 1995, 74(5):1870-1879.
  • [68]Petruska JC, Napaporn J, Johnson RD, Gu JG, Cooper BY: Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J Neurophysiol 2000, 84(5):2365-2379.
  • [69]Stucky CL, Lewin GR: Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 1999, 19(15):6497-6505.
  • [70]Dirajlal S, Pauers LE, Stucky CL: Differential response properties of IB(4)-positive and -negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 2003, 89(1):513-524.
  • [71]Weil-Fugazza J, Onteniente B, Audet G, Philippe E: Dopamine as trace amine in the dorsal root ganglia. Neurochem Res 1993, 18(9):965-969.
  • [72]Lackovic Z, Neff NH: Evidence for the existence of peripheral dopaminergic neurons. Brain Res 1980, 193(1):289-292.
  • [73]Vega JA, Amenta F, Hernandez LC, del Valle ME: Presence of catecholamine-related enzymes in a subpopulation of primary sensory neurons in dorsal root ganglia of the rat. Cell Mol Biol 1991, 37(5):519-530.
  • [74]Kummer W, Gibbins IL, Stefan P, Kapoor V: Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 1990, 261(3):595-606.
  • [75]Feigenspan A, Gustincich S, Bean BP, Raviola E: Spontaneous activity of solitary dopaminergic cells of the retina. J Neurosci 1998, 18(17):6776-6789.
  • [76]Puopolo M, Bean BP, Raviola E: Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb. J Neurophysiol 2005, 94(5):3618-3627.
  • [77]Pignatelli A, Kobayashi K, Okano H, Belluzzi O: Functional properties of dopaminergic neurones in the mouse olfactory bulb. J Physiol 2005, 564(Pt 2):501-514.
  • [78]Puopolo M, Hochstetler SE, Gustincich S, Wightman RM, Raviola E: Extrasynaptic release of dopamine in a retinal neuron: activity dependence and transmitter modulation. Neuron 2001, 30(1):211-225.
  • [79]Witkovsky P: Dopamine and retinal function. Adv Ophthalmol 2004, 108(1):17-40.
  • [80]Berkowicz DA, Trombley PQ: Dopaminergic modulation at the olfactory nerve synapse. Brain Res 2000, 855(1):90-99.
  • [81]Hsia AY, Vincent JD, Lledo PM: Dopamine depresses synaptic inputs into the olfactory bulb. J Neurophysiol 1999, 82(2):1082-1085.
  • [82]Nowycky MC, Halasz N, Shepherd GM: Evoked field potential analysis of dopaminergic mechanisms in the isolated turtle olfactory bulb. Neuroscience 1983, 8(4):717-722.
  • [83]Davison IG, Boyd JD, Delaney KR: Dopamine inhibits mitral/tufted– > granule cell synapses in the frog olfactory bulb. J Neurosci 2004, 24(37):8057-8067.
  • [84]Duchamp-Viret P, Coronas V, Delaleu JC, Moyse E, Duchamp A: Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study. Neuroscience 1997, 79(1):203-216.
  • [85]Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo A: The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 2010, 34(2):185-191.
  • [86]Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH: Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 2009, 462(7273):651-655.
  • [87]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389(6653):816-824.
  • [88]Nagy JI, Hunt SP: Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin. Neuroscience 1982, 7(1):89-97.
  • [89]Silverman JD, Kruger L: Selective neuronal glycoconjugate expression in sensory and autonomic ganglia: relation of lectin reactivity to peptide and enzyme markers. J Neurocytol 1990, 19(5):789-801.
  • [90]Ogata N, Tatebayashi H: Kinetic analysis of two types of Na + channels in rat dorsal root ganglia. J Physiol 1993, 466:9-37.
  • [91]Ikeda SR, Schofield GG: Tetrodotoxin-resistant sodium current of rat nodose neurones: monovalent cation selectivity and divalent cation block. J Physiol 1987, 389:255-270.
  • [92]Kuo CC, Lin TJ, Hsieh CP: Effect of Na(+) flow on Cd(2+) block of tetrodotoxin-resistant Na(+) channels. J Gen Physiol 2002, 120(2):159-172.
  • [93]Neher E: Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 1992, 207:123-131.
  文献评价指标  
  下载次数:0次 浏览次数:1次