期刊论文详细信息
Particle and Fibre Toxicology
Climatic effects on mosquito abundance in Mediterranean wetlands
Jordi Figuerola3  Ramón Soriguer3  Santiago Ruiz2  David Roiz1 
[1] Present address: UMR 224 MIVEGEC/BEES, IRD, Montpellier, France;Diputación de Huelva, Área de Medio Ambiente, Servicio de Control de Mosquitos, Huelva, Spain;Wetland Ecology Department, Doñana Biological Station, CSIC, Sevilla, Spain
关键词: Dirofilariasis;    Plasmodium;    West Nile;    GLM;    GAM;    Rainfall;    Temperature;    Climate change;    Mosquitoes;   
Others  :  1183549
DOI  :  10.1186/1756-3305-7-333
 received in 2014-03-22, accepted in 2014-06-26,  发布年份 2014
PDF
【 摘 要 】

Background

The impact of climate change on vector-borne diseases is highly controversial. One of the principal points of debate is whether or not climate influences mosquito abundance, a key factor in disease transmission.

Methods

To test this hypothesis, we analysed ten years of data (2003–2012) from biweekly surveys to assess inter-annual and seasonal relationships between the abundance of seven mosquito species known to be pathogen vectors (West Nile virus, Usutu virus, dirofilariasis and Plasmodium sp.) and several climatic variables in two wetlands in SW Spain.

Results

Within-season abundance patterns were related to climatic variables (i.e. temperature, rainfall, tide heights, relative humidity and photoperiod) that varied according to the mosquito species in question. Rainfall during winter months was positively related to Culex pipiens and Ochlerotatus detritus annual abundances. Annual maximum temperatures were non-linearly related to annual Cx. pipiens abundance, while annual mean temperatures were positively related to annual Ochlerotatus caspius abundance. Finally, we modelled shifts in mosquito abundances using the A2 and B2 temperature and rainfall climate change scenarios for the period 2011–2100. While Oc. caspius, an important anthropophilic species, may increase in abundance, no changes are expected for Cx. pipiens or the salt-marsh mosquito Oc. detritus.

Conclusions

Our results highlight that the effects of climate are species-specific, place-specific and non-linear and that linear approaches will therefore overestimate the effect of climate change on mosquito abundances at high temperatures. Climate warming does not necessarily lead to an increase in mosquito abundance in natural Mediterranean wetlands and will affect, above all, species such as Oc. caspius whose numbers are not closely linked to rainfall and are influenced, rather, by local tidal patterns and temperatures. The final impact of changes in vector abundance on disease frequency will depend on the direct and indirect effects of climate and other parameters related to pathogen amplification and spillover on humans and other vertebrates.

【 授权许可】

   
2014 Roiz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150520080514632.pdf 2243KB PDF download
Figure 7. 110KB Image download
Figure 6. 625KB Image download
Figure 5. 58KB Image download
Figure 4. 701KB Image download
Figure 3. 680KB Image download
Figure 2. 643KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Gratz NG: Emerging and resurging vector-borne diseases. Annu Rev Entomol 1999, 44:51-75.
  • [2]Daszak P, Cunningham AA, Hyatt AD: Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 2001, 78(2):103-116.
  • [3]Gubler DJ: The Global Threat of Emergent/Re-emergent Vector-Borne Diseases. In Vector Biology, Ecology and Control. Edited by Atkinson PW. Dordrecht: Springer Netherlands; 2010:39-62.
  • [4]Taylor LH, Latham SM, Woolhouse MEJ: Risk factors for human disease emergence. Philos T Roy Soc B 2001, 356(1411):983-989.
  • [5]Shope R: Global climate change and infectious diseases. Environ Health Persp 1991, 96:171-174.
  • [6]Epstein PR: Global warming and vector-borne disease. Lancet 1998, 351(9117):1737.
  • [7]Reiter P: Climate change and mosquito-borne disease. Environ Health Persp 2001, 109(Suppl 1):141-161.
  • [8]Patz JA, Campbell-Lendrum D, Holloway T, Foley JA: Impact of regional climate change on human health. Nature 2005, 438(7066):310-317.
  • [9]Gould EA, Higgs S: Impact of climate change and other factors on emerging arbovirus diseases. Trans Roy Soc Trop Med Hyg 2009, 103(2):109-121.
  • [10]Lafferty KD: The ecology of climate change and infectious diseases. Ecology 2009, 90:888-900.
  • [11]Dobson A: Climate variability, global change, immunity, and the dynamics of infectious diseases. Ecology 2009, 90:920-927.
  • [12]Brisbois BW, Ali SH: Climate change, vector-borne disease and interdisciplinary research: social science perspectives on an environment and health controversy. EcoHealth 2010, 7(4):425-438.
  • [13]Rogers DJ, Randolph SE, Simon I, Hay AG, David JR: Climate Change and Vector-Borne Diseases. In Global Mapping of Infectious Diseases: Methods, Examples and Emerging Applications. London: Academic Press; 2006:345-381.
  • [14]Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB: Frontiers in climate change–disease research. Trends Ecol Evol 2011, 26(6):270-277.
  • [15]Patz JA, Graczyk TK, Geller N, Vittor AY: Effects of environmental change on emerging parasitic diseases. Int J Parasitol 2000, 30(12–13):1395-1405.
  • [16]Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F: Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 2007, 370(9602):1840-1846.
  • [17]Vazquez A, Jimenez-Clavero M, Franco L, Donoso-Mantke O, Sambri V, Niedrig M, Zeller H, Tenorio A: Usutu virus: potential risk of human disease in Europe. Eurosurveillance 2011, 16(31):19935.
  • [18]Lindgren E, Andersson Y, Suk JE, Sudre B, Semenza JC: Monitoring EU emerging infectious disease risk due to climate change. Science 2012, 336(6080):418-419.
  • [19]Savage HM, Ceianu C, Nicolescu G, Karabatsos N, Lanciotti R, Vladimirescu A, Laiv L, Ungureanu A, Romanca C, Tsai TF: Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. Am J Trop Med Hyg 1999, 61(4):600-611.
  • [20]Platonov AE, Shipulin GA, Shipulina OY, Tyutyunnik EN, Frolochkina TI, Lanciotti RS, Yazyshina S, Platonova OV, Obukhov IL, Zhukov AN: Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999. Emerg Infect Dis 2001, 7(1):128-132.
  • [21]Ponçon N, Toty C, L’ambert G, Le Goff G, Brengues C, Schaffner F, Fontenille D: Population dynamics of pest mosquitoes and potential malaria and West Nile virus vectors in relation to climatic factors and human activities in the Camargue, France. Med Vet Entomol 2007, 21(4):350-357.
  • [22]Hubálek Z, Halouzka J: West Nile fever–a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 1999, 5(5):643-650.
  • [23]Calistri P, Monaco F, Savini G, Guercio A, Purpari G, Vicari D, Cascio S, Lelli R: Further spread of West Nile virus in Italy. Vet Ital 2010, 46(4):467-474.
  • [24]Angelini P, Tamba M, Finarelli AC, Bellini R, Albieri A, Bonilauri P, Cavrini F, Dottori M, Gaibani P, Martini E: West Nile virus circulation in Emilia-Romagna, Italy: the integrated surveillance system 2009. Eurosurveilancel 2010, 15(16):19547.
  • [25]Danis K, Papa A, Papanikolaou E, Dougas G, Terzaki I, Baka A, Vrioni G, Kapsimali V, Tsakris A, Kansouzidou A: Ongoing outbreak of West Nile virus infection in humans, Greece, July to August 2011. Eurosurveillance 2011, 16(34):19951.
  • [26]Kramer LD, Styer LM, Ebel GD: A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 2008, 53(1):61-81.
  • [27]Jourdain E, Gauthier-Clerc M, Bicout D, Sabatier P: Bird migration routes and risk for pathogen dispersion into Western Mediterranean Wetlands. Emerg Infect Dis 2007, 13(3):365-372.
  • [28]Figuerola J, Jimenez-Clavero MA, Rojo G, Gomez-Tejedor C, Soriguer R: Prevalence of West Nile virus neutralizing antibodies in colonial aquatic birds in southern Spain. Avian Pathol 2007, 36(3):209-212.
  • [29]Figuerola J, Jimenez-Clavero MA, Lopez G, Rubio C, Soriguer R, Gomez-Tejedor C, Tenorio A: Size matters: West Nile virus neutralizing antibodies in resident and migratory birds in Spain. Vet Microbiol 2008, 132(1–2):39-46.
  • [30]Jimenez-Clavero MA, Llorente F, Sotelo E, Soriguer R, Gomez-Tejedor C, Figuerola J: West Nile virus serosurveillance in horses in Donana, Spain, 2005 to 2008. Vet Rec 2010, 167(10):379-380.
  • [31]Bernabeu-Wittel M, Ruiz-Pérez M, del Toro MD, Aznar J, Muniain Á, de Ory F, Domingo C, Pachón J: West Nile virus past infections in the general population of Southern Spain. Enferm Infec Micr Cl 2007, 25(9):561.
  • [32]Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, Vázquez A, Figuerola J: Feeding patterns of potential West Nile virus vectors in South-West Spain. PLoS ONE 2012, 7(6):e39549.
  • [33]Vazquez A, Sanchez-Seco MP, Ruiz S, Molero F, Hernandez L, Moreno J, Magallanes A, Tejedor CG, Tenorio A: Putative new lineage of west nile virus, Spain. Emerg Infect Dis 2010, 16(3):549-552.
  • [34]Sotelo E, Fernández-Pinero J, Jiménez-Clavero MÁ: La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infec Micr Cl 2012, 30(2):75-83.
  • [35]García-Bocanegra I, Jaén-Téllez JA, Napp S, Arenas-Montes A, Fernández-Morente M, Fernández-Molera V, Arenas A: West Nile fever outbreak in horses and humans, Spain, 2010. Emerg Infect Dis 2011, 17(12):2397-2399.
  • [36]Sotelo E, Gutierrez-Guzmán A, del Amo J, Llorente F, El-Harrak M, Pérez-Ramírez E, Blanco J, Höfle U, Jiménez-Clavero M: Pathogenicity of two recent Western Mediterranean West Nile virus isolates in a wild bird species indigenous to Southern Europe: the red-legged partridge. Vet Res 2011, 42:11.
  • [37]Aguero M, Fernández-Pinero J, Buitrago D, Sánchez A, Elizalde M, San Miguel E, Villalba R, Llorente F, Jiménez-Clavero MA: Bagaza virus in partridges and pheasants, Spain, 2010. Emerg Infect Dis 2011, 17:1498-1501.
  • [38]Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A: Mosquitoes and Their Control. Berlin: Springer; 2010.
  • [39]Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaiem A, Brunhes J: Les moustiques d’Europe/The mosquitoes of Europe. CD-ROM Montpellier. France: Institut de Recherche pour le Développement/EID Méditerranée; 2001.
  • [40]Shone SM, Ferrao PN, Lesser CR, Norris DE, Glass GE: Analysis of mosquito vector species abundances in Maryland using geographic information systems. Ann NY Acad Sci 2006, 951:364-368.
  • [41]Zuur AF, Ieno EN, Smith GM: Analysing Ecological Data. Berlin: Springer; 2007.
  • [42]Zuur AF, Ieno EN, Elphick CS: A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 2010, 1(1):3-14.
  • [43]Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J: Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 2009, 24(3):127-135.
  • [44]Crawley MJ: Statistical Computing: an Introduction to Data Analysis using S-Plus. Chichester: John Wiley and Sons; 2002.
  • [45]Ver Hoef JM, Boveng PL: Quassi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 2007, 88:2766-2772.
  • [46]Zuur AF: A Beginner’s Guide to Generalized Additive Models with R. Newburg: Highland Statistics Ltd; 2014.
  • [47]Jupp PG: The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann NY Acad Sci 2001, 951(1):143-152.
  • [48]Reisen WK, Fang Y, Martinez VM: Effects of temperature on the transmission of west nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 2006, 43(2):309-317.
  • [49]Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD: Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 2010, 3(1):19.
  • [50]Tabachnick WJ: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 2010, 213(6):946-954.
  • [51]Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM: Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne Zoonot 2007, 7:337-343.
  • [52]Shaman J, Day JF, Stieglitz M: Drought-induced amplification and epidemic transmission of West Nile virus in Southern Florida. J Med Entomol 2005, 42:134-141.
  • [53]Uejio CK, Kemp A, Comrie AC: Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa. Vector-Borne Zoonot 2011, 12(2):117-125.
  • [54]Leisnham PT, Sandoval-Mohapatra S: Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula. Int J Environ Res Public Health 2011, 8(8):3099-3113.
  • [55]Hribar LJ, DeMay DJ, Lund UJ: The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. J Vector Ecol 2010, 35(2):339-346.
  • [56]Matowo NS, Moore J, Mapua S, Madumia EP, Moshi IR, Kaindoa EW, Mwangungulu SP, Kavishe DE, Sumaye RD, Lwetoijera DW, Okumu FO: Using a new odour-baited device to explore options for luring and killing outdoor-biting malaria vectors: a report on design and field evaluation of the Mosquito Landing Box. Parasites and Vectors 2013, 6:137.
  • [57]Bradshaw WE, Holzapfel CM: Climate change. Evolutionary response to rapid climate change. Science 2006, 312(5779):1477-1478.
  • [58]Gong H, DeGaetano A, Harrington L: Climate-based models for West Nile Culex mosquito vectors in the Northeastern US. Int J Biometeorol 2011, 55(3):435-446.
  • [59]Brunet M, Casado MJ, de Castro M, Galán P, López JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J: Generación de escenarios de cambio climático regionalizados para España. Madrid: Agencia Estatal de Meteorología, Ministerio de Medio Ambiente; 2009:158.
  • [60]Bradley TJ: Physiology of osmoregulation in mosquitoes. Annu Rev Entomol 1987, 32:439-462.
  • [61]Vázquez A, Sánchez-Seco M-P, Palacios G, Molero F, Reyes N, Ruiz S, Aranda C, Marqués E, Escosa R, Moreno J, Figuerola J, Tenorio A: Novel flaviviruses detected in different species of mosquitoes in Spain. Vector-Borne Zoonot 2012, 12(3):223-229.
  • [62]Ramasamy R, Surendran SN: Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones. Front Physiol 2012, 3:198.
  • [63]de Castro M, Martín-Vide J, Alonso S: El clima de Espana: Pasado, Presente Y Escenarios de Clima para el Siglo XXI. In Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático. Edited by Moreno-Rodríguez JM. Madrid: Ministerio de Medio Ambiente; 2005:1-64.
  • [64]Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD: Climate change and infectious diseases: from evidence to a predictive framework. Science 2013, 341(6145):514-519.
  • [65]Kilpatrick AM, Meola MA, Moudy RM, Kramer LD: Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 2008, 4(6):e1000092.
  • [66]Baylis M: Research gaps in understanding how climate change will affect arboviral diseases. Anim Health Res Rev 2013, 14(02):143-146.
  • [67]Ponçon N, Tran A, Toty C, Luty AJF, Fontenille D: A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France. Malaria J 2008, 7(1):147.
  • [68]Kilpatrick AM: Globalization, land use, and the invasion of West Nile virus. Science 2011, 334(6054):323-327.
  文献评价指标  
  下载次数:37次 浏览次数:47次