期刊论文详细信息
Stem Cell Research & Therapy
Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice
Ali Mojallal4  Odile Damour1  Dominique Sigaudo-Roussel1  Héléna Rutschi3  Orianne Ardisson1  Ondine Rouyer1  Audrey Josset-Lamaugarny1  Charlotte Lequeux1  Fabien Boucher4  Jonathan Rodriguez2 
[1] IBCP-UMR 5305 CNRS, 7 passage du Vercors, Lyon, 69 367, Cedex 07, France;Cell and Tissue Bank, Cutaneous Substitute Laboratory, Edouard Herriot Hospital, 5, place d’Arsonval, Pavillon I, Lyon, 69437, France;Laboratoire Central d’Anatomie Pathologique, Hôpital Édouard Herriot, Lyon, France;Service de chirurgie plastique, esthétique et reconstructrice, Hospices Civils de Lyon, University of Lyon, Lyon, France
关键词: Vehicle;    Skin blood perfusion;    Cutaneous wound healing;    Adipose-derived stem cells;   
Others  :  1235619
DOI  :  10.1186/s13287-015-0238-3
 received in 2014-07-09, accepted in 2015-11-16,  发布年份 2015
PDF
【 摘 要 】

Background

The use of stem cells from adipose tissue or adipose-derived stem cells (ASCs) in regenerative medicine could be an interesting alternative to bone marrow stem cells because they are easily accessible and available in large quantities. The aim of this study was to evaluate the potential effect of ASCs on the healing of 12 mm diameter-excisional wounds (around 110 mm 2 ) in nude mice.

Methods

Thirty nude mice underwent surgery to create one 12-mm excisional wound per mouse (spontaneous healing, n = 6; Cytocare® 532, n = 12; ASCs, n = 12). The Galiano wound model was chosen to avoid shrinkage and thus slow the spontaneous healing (SH) of mouse skin, making it closer to the physiology of human skin healing. Transparent dressings were used to enable daily healing time measurements to be taken. Immunohistochemistry, histological and blood perfusion analysis were carried out on the healed skin.

Results

The in vivo results showed the effectiveness of using ASCs on reducing the time needed for complete healing to 21.2 days for SH, 17.4 days for vehicle alone (Cytocare® 532) and 14.6 days with the addition of ASCs (p < 0.001). Moreover, cutaneous perfusion of the healed wound was significantly improved in ASC-treated mice compared to SH group, as shown by laser Doppler flowmetry and the quantitation of blood vessels using immunohistochemistry of αsmooth muscle actin.

Conclusions

The tolerance and efficacy of cryopreserved ASCs to accelerate the complete closure of the wound by increasing the maturation of the skin and its blood perfusion, shows their therapeutic benefit in the wound healing context.

【 授权许可】

   
2015 Rodriguez et al.

【 预 览 】
附件列表
Files Size Format View
20160123100906545.pdf 3584KB PDF download
Fig. 4. 41KB Image download
Fig. 3. 266KB Image download
Fig. 2. 85KB Image download
Fig. 1. 86KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Mustoe T: Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 2004, 187:65S-70.
  • [2]Riedel K, Ryssel H, Koellensperger E, Germann G, Kremer T. Pathogenesis of chronic wounds. Chir Z Für Alle Geb Oper Medizen. 2008;79:526–34. German.
  • [3]Epstein FH, Singer AJ, Clark RA: Cutaneous wound healing. N Engl J Med 1999, 341:738-46.
  • [4]Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009, 17:763-71.
  • [5]Berlanga-Acosta J: Diabetic lower extremity wounds: the rationale for growth factors-based infiltration treatment. Int Wound J 2011, 8:612-20.
  • [6]Hu X, Sun H, Han C, Wang X, Yu W: Topically applied rhGM-CSF for the wound healing: a systematic review. Burns 2011, 37:729-41.
  • [7]Shankaran V, Brooks M, Mostow E: Advanced therapies for chronic wounds: NPWT, engineered skin, growth factors, extracellular matrices. Dermatol Ther 2013, 26:215-21.
  • [8]Greaves NS, Iqbal SA, Baguneid M, Bayat A: The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen 2013, 21:194-210.
  • [9]Sibbald RG, Zuker R, Coutts P, Coelho S, Williamson D, Queen D: Using a dermal skin substitute in the treatment of chronic wounds secondary to recessive dystrophic epidermolysis bullosa: a case series. Ostomy Wound Manage 2005, 51:22-46.
  • [10]Gibbs S, van den Hoogenband HM, Kirtschig G, Richters CD, Spiekstra SW, Breetveld M, et al.: Autologous full-thickness skin substitute for healing chronic wounds. Br J Dermatol 2006, 155:267-74.
  • [11]Gimble JM, Guilak F: Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol 2003, 58:137-60.
  • [12]Atalay S, Coruh A, Deniz K: Stromal vascular fraction improves deep partial thickness burn wound healing. Burns 2014, 40:1375-83.
  • [13]Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J, Schouten TE, et al.: Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006, 8:166-77.
  • [14]Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al.: Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15:641-8.
  • [15]Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al.: Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006, 24:376-85.
  • [16]Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, et al.: Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract 2011, 93:228-34.
  • [17]Huang SP, Hsu CC, Chang SC, Wang CH, Deng SC, Dai NT, et al.: Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012, 69:656-62.
  • [18]Ju X, Pan F, Bai S, Tian X, Tong H, Wang J. An experimental study on repairing full-thickness skin wound by human acellular amniotic membrane loaded with adipose-derived stem cells in rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:143–9. Chinese.
  • [19]Ebrahimian TG, Pouzoulet F, Squiban C, Buard V, André M, Cousin B, et al.: Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler Thromb Vasc Biol 2009, 29:503-10.
  • [20]Lim JS, Yoo G: Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J Korean Med Sci 2010, 25:746-51.
  • [21]Lee SH, Lee JH, Cho KH: Effects of human adipose-derived stem cells on cutaneous wound healing in nude mice. Ann Dermatol 2011, 23:150-5.
  • [22]Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG: Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater 2013, 9:5243-50.
  • [23]Amos PJ, Kapur SK, Stapor PC, Shang H, Bekiranov S, Khurgel M, et al.: Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 2010, 16:1595-606.
  • [24]Altman AM, Yan Y, Matthias N, Bai X, Rios C, Mathur AB, et al.: IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009, 27:250-8.
  • [25]Nie C, Yang D, Xu J, Si Z, Jin X, Zhang J: Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 2011, 20:205-16.
  • [26]Huang SP, Huang CH, Shyu JF, Lee HS, Chen SG, Chan JY, et al.: Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci 2013, 20:51. BioMed Central Full Text
  • [27]Nambu M, Ishihara M, Kishimoto S, Yanagibayashi S, Yamamoto N, Azuma R, et al.: Stimulatory effect of autologous adipose tissue-derived stromal cells in an atelocollagen matrix on wound healing in diabetic db/db mice. J Tissue Eng 2011, 2011:158105.
  • [28]Jiang D, Qi Y, Walker NG, Sindrilaru A, Hainzl A, Wlaschek M, et al.: The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing. Biomaterials 2013, 34:2501-15.
  • [29]Yun IS, Jeon YR, Lee WJ, Lee JW, Rah DK, Tark KC, et al.: Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg 2012, 38:1678-88.
  • [30]Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, et al.: Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med 2013.
  • [31]Forcheron F, Agay D, Scherthan H, Riccobono D, Herodin F, Meineke V, et al.: Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One 2012., 7(2) Article ID e31694
  • [32]Hadad I, Johnstone BH, Brabham JG, Blanton MW, Rogers PI, Fellers C, et al.: Development of a porcine delayed wound-healing model and its use in testing a novel cell-based therapy. Int J Radiat Oncol 2010, 78:888-96.
  • [33]Blanton MW, Hadad I, Johnstone BH, Mund JA, Rogers PI, Eppley BL, et al.: Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 2009, 123(Suppl):56S-64.
  • [34]Pelizzo G, Avanzini MA, Cornaglia AI, Osti M, Romano P, Avolio L, et al.: Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J Transl Med 2015, 13:219. BioMed Central Full Text
  • [35]Hong SJ, Jia SX, Xie P, Xu W, Leung KP, Mustoe TA, et al.: Topically delivered adipose derived stem cells show an activated-fibroblast phenotype and enhance granulation tissue formation in skin wounds. PLoS One 2013., 8(1) Article ID e55640
  • [36]Galiano RD, Michaels J 5th, Dobryansky M, Levine JP, Gurtner GC: Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen 2004, 12:485-92.
  • [37]Lequeux C, Rodriguez J, Boucher F, Rouyer O, Damour O, Mojallal A, et al.: In vitro and in vivo biocompatibility, bioavailability and tolerance of an injectable vehicle for adipose-derived stem/stromal cells for plastic surgery indications. J Plast Reconstr Aesthet Surg 2015, 68:1491-7.
  • [38]Coleman WP 4th, Hendry SL 2nd: Principles of liposuction. Semin Cutan Med Surg 2006, 25:138-44.
  • [39]Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998, 238:265-72.
  • [40]Sotocinal SG, Sorge RE, Zaloum A, Tuttle AH, Martin LJ, Wieskopf JS, et al.: The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol Pain 2011, 7:55. BioMed Central Full Text
  • [41]Sigaudo-Roussel D, Demiot C, Fromy B, Koïtka A, Lefthériotis G, Abraham P, et al.: Early endothelial dysfunction severely impairs skin blood flow response to local pressure application in streptozotocin-induced diabetic mice. Diabetes 2004, 53:1564-9.
  • [42]Fromy B, Sigaudo-Roussel D, Gaubert-Dahan ML, Rousseau P, Abraham P, Benzoni D, et al.: Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans. J Invest Dermatol 2009, 130:849-55.
  • [43]Chang Q, Li J, Dong Z, Liu L, Lu F: Quantitative volumetric analysis of progressive hemifacial atrophy corrected using stromal vascular fraction-supplemented autologous fat grafts. Dermatol Surg 2013, 39:1465-73.
  • [44]Gentile P, Orlandi A, Scioli MG, Pasquali CD, Bocchini I, Curcio CB, et al.: A comparative translational study: the combined use of enhanced stromal vascular fraction and platelet-rich plasma improves fat grafting maintenance in breast reconstruction. Stem Cells Transl Med 2012, 1:341-51.
  • [45]Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K: Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 2008, 32:48-55.
  • [46]Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, et al.: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009, 38:201-9.
  • [47]Kølle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, et al.: Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 2013, 382:1113-20.
  • [48]De la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A: Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis 2013, 28:313-23.
  • [49]Sterodimas A, de Faria J, Nicaretta B, Papadopoulos O, Papalambros E, Illouz YG: Cell-assisted lipotransfer. Aesthet Surg J 2010, 30:78-81.
  • [50]Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, et al.: Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 2006, 12:3375-82.
  • [51]Le H, Kleinerman R, Lerman OZ, Brown D, Galiano R, Gurtner GC, et al.: Hedgehog signaling is essential for normal wound healing. Wound Repair Regen 2008, 16:768-73.
  • [52]Nie C, Zhang G, Yang D, Liu T, Liu D, Xu J, et al.: Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med 2012, 9(3):224-35.
  • [53]Martínez-Santamaría L, Conti CJ, Llames S, García E, Retamosa L, Holguín A, et al.: The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model. Exp Dermatol 2013, 22:195-201.
  • [54]Michaels 5th J, Dobryansky M, Galiano RD, Bhatt KA, Ashinoff R, Ceradini DJ, et al. Topical vascular endothelial growth factor reverses delayed wound healing secondary to angiogenesis inhibitor administration. Wound Repair Regen. 2005;13:506–12.
  • [55]Mojallal A, Lequeux C, Shipkov C, Rifkin L, Rohrich R, Duclos A, et al.: Stem cells, mature adipocytes, and extracellular scaffold: what does each contribute to fat graft survival? Aesthetic Plast Surg 2011, 35:1061-72.
  • [56]Meyer K, Palmer JW: The polysaccharide of the vitreous humor. J Biol Chem 1934, 107:629-34.
  • [57]Gall Y. Hyaluronic acid: structure, metabolism and implication in cicatrisation. Ann Dermatol Vénéréologie. 2010;37 Suppl 1:S30–9. French.
  • [58]McKee CM, Lowenstein CJ, Horton MR, Wu J, Bao C, Chin BY, et al.: Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor κB-dependent mechanism. J Biol Chem 1997, 272:8013-8.
  • [59]Horton MR, Shapiro S, Bao C, Lowenstein CJ, Noble PW: Induction and regulation of macrophage metalloelastase by hyaluronan fragments in mouse macrophages. J Immunol 1999, 162:4171-6.
  • [60]Kim YM, Oh SH, Choi JS, Lee S, Ra JC, Lee JH, et al.: Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope 2014, 124:E64-72.
  • [61]Junqueira LC, Bignolas G, Brentani RR: Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 1979, 11:447-55.
  • [62]Lc J, Cossermelli W, Brentani R: Differential staining of collagens type I, II and III by Sirius Red and polarization microscopy. Arch Histol Jpn 1978, 41:267-74.
  • [63]Metral E, Dos Santos M, Thépot A, Rachidi W, Mojallal A, Auxenfans C, Damour O. Adipose-derived stem cells promote skin homeostasis and prevent its senescence in an in vitro skin model. J Stem Cell Res Ther. 2014;4:194.. http://www.omicsonline.org/open-access/adipose-derived-stem-cells-promote-skinhomeostasis-prevent-senescence-2157-7633.1000194.php?aid=24999 webcite
  文献评价指标  
  下载次数:6次 浏览次数:11次