期刊论文详细信息
Particle and Fibre Toxicology
Serological and molecular analysis of feline vector-borne anaplasmosis and ehrlichiosis using species-specific peptides and PCR
Edward B. Breitschwerdt2  Brendon Thatcher1  Melissa J. Beall1  Ramaswamy Chandrashekar1  Karen Park2  Brittany Thomas2  Barbara A. Qurollo2  Barbara C. Hegarty2 
[1] IDEXX Laboratories, Inc, Westbrook, ME, USA;Intracellular Pathogens Research Laboratory, College of Veterinary Medicine, North Carolina State University (NCSU), 1060 William Moore Dr., Raleigh 27607, NC, USA
关键词: Vector-borne pathogens;    Cats;    Ehrlichia;    Borrelia;    Anaplasma;   
Others  :  1224201
DOI  :  10.1186/s13071-015-0929-8
 received in 2015-03-13, accepted in 2015-06-02,  发布年份 2015
PDF
【 摘 要 】

Background

With the exception of Bartonella spp. or Cytauxzoon felis, feline vector-borne pathogens (FVBP) have been less frequently studied in North America and are generally under-appreciated as a clinical entity in cats, as compared to dogs or people. This study investigated selected FVBP seroreactivity and PCR prevalence in cats using archived samples.

Methods

Feline blood samples submitted to the Vector Borne Diseases Diagnostic Laboratory (VBDDL) at North Carolina State University College of Veterinary Medicine (NCSU-CVM) between 2008 and 2013 were tested using serological assays and PCR. An experimental SNAP® Multi-Analyte Assay (SNAP® M-A) (IDEXX Laboratories, Inc. Westbrook, Maine, USA) was used to screen all sera for antibodies to Anaplasma and Ehrlichia genus peptides and A.phagocytophilum, A.platys, B.burgdorferi, E.canis, E.chaffeensis, and E.ewingii species-specific peptides. PCR assays were used to amplify Anaplasma or Ehrlichia DNA from extracted ethylenediaminetetraacetic acid (EDTA)-anti-coagulated blood samples. Amplicons were sequenced to identify species.

Results

Overall, 7.8 % (56/715) of cats were FVBP seroreactive and 3.2 % (13/406) contained Anaplasma or Ehrlichia DNA. Serologically, B.burgdorferi (5.5 %) was the most prevalent FVBP followed by A.phagocytophilum (1.8 %). Ehrlichia spp. antibodies were found in 0.14 % (12/715) of cats with species-specific seroreactivity to E.canis (n = 5), E.ewingii (n = 2) and E.chaffeensis (n = 1). Of seropositive cats, 16 % (9/56) were exposed to more than one FVBP, all of which were exposed to B.burgdorferi and either A.phagocytophilum (n = 7) or E.ewingii (n = 2). Based upon PCR and DNA sequencing, 4, 3, 3, 2, and 1 cat were infected with A.phagocytophilum, A.platys, E. ewingii, E. chaffeensis and E.canis, respectively.

Conclusions

Cats are exposed to and can be infected with vector-borne pathogens that commonly infect dogs and humans. To our knowledge, this study provides the first evidence for E.chaffeensis and E.ewingii infection in naturally-exposed cats in North America. Results from this study support the need for regional, serological and molecular FVBP prevalence studies, the need to further optimize serodiagnostic and PCR testing for cats, and the need for prospective studies to better characterize clinicopathological disease manifestations in cats infected with FVBP.

【 授权许可】

   
2015 Hegarty et al.

【 预 览 】
附件列表
Files Size Format View
20150908142545413.pdf 487KB PDF download
【 参考文献 】
  • [1]Levy JK, Lappin MR, Glaser AL, Birkenheuer AJ, Anderson TC, Edinboro CH. Prevalence of infectious diseases in cats and dogs rescued following Hurricane Katrina. J Am Vet Med Assoc. 2011; 238:311-7.
  • [2]Birkenheuer AJ, Le JA, Valenzisi AM, Tucker MD, Levy MG, Breitschwerdt EB. Cytauxzoon felis in cats in the mid-Atlantic states: 34 cases (1998–2004). J Am Vet Med Assoc. 2006; 228:568-71.
  • [3]Little SE. Ehrlichiosis and anaplasmosis in dogs and cats. Vet Clin North Am Small Anim Pract. 2010; 40:1121-40.
  • [4]Lappin MR, Breitschwerdt EB, Jensen WA, Dunnigan B, Rha JY, Williams CR et al.. Molecular and serologic evidence of Anaplasma phagocytophilum infection in cats in North America. J Am Vet Med Assoc. 2004; 225:893-6.
  • [5]Magnarelli LA, Bushmich SL, Ijdo JW, Fikrig E. Seroprevalence of antibodies against Borrelia burgdorferi and Anaplasma phagocytophilum in cats. Am J Vet Res. 2005; 66:1895-9.
  • [6]Billeter SA, Spencer JA, Griffin B, Dykstra CC, Blagburn BL. Prevalence of Anaplasma phagocytophilum in domestic felines in the United States. Vet Parasiol. 2007; 147:194-8.
  • [7]Ayllón T, Diniz PPVP, Breitschwerdt EB, Villaescusa A, Rodríguez-Franco F, Sainz A. Vector-borne diseases in client-owned and stray cats from Madrid, Spain. Vector Borne Zoo Dis. 2012; 12:143-50.
  • [8]Braga Mdo S, André MR, Freschi CR, Teixeira MC, Machado RZ. Molecular and serological detection of Ehrlichia spp. in cats on São Luís Island, Maranhão, Brazil. Rev Bras Parasitol Vet. 2012; 21:37-41.
  • [9]Braga IA, Santos LG, Melo AL, Jaune FW, Ziliani TF, Girardi AF et al.. Hematological values associated to the serological and molecular diagnostic in cats suspected of Ehrlichia canis infection. Rev Bras Parasitol Vet. 2013; 22:470-4.
  • [10]Beaufils JP, Marin-Granel J, Jumelle P. Ehrlichia infection in cats: a review of three cases. Prat Med Chir Anim Comp. 1995; 30:397-402.
  • [11]Maia C, Ramos C, Coimbra M, Bastos F, Martins A, Pinto P et al.. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit Vectors. 2014; 7:115. BioMed Central Full Text
  • [12]Spada E, Proverbio D, Galluzzo P, Della Pepa A, Perego R, Bagnaqatti De Giorgi GB et al.. Molecular study on selected vector-borne infections in urban stray colony cats in northern Italy. J Fel Med Surg. 2014; 16:684-8.
  • [13]Aguirre E, Tesouro MA, Amusategui I, Rodriguez-Franco F, Sainz A. Assessment of feline ehrlichiosis in central Spain using serology and a polymerase chain reaction technique. Ann N Y Acad Sci. 2004; 1026:103-5.
  • [14]Ortuno A, Gauss CBL, Garcia F, Gutierrez JF. Serological evidence of Ehrlichia spp. exposure in cats from Northeastern Spain. J Vet Med. 2005; 52:246-8.
  • [15]Bjöersdorff A, Svendenius L, Owens JH, Massung RF. Feline granulocytic ehrlichiosis—a report of a new clinical entity and characterization of the infectious agent. J Small Animal Practice. 1999; 40:20-4.
  • [16]Matthewman LA, Kelly PJ, Wray K, Bryson NR, Rycroft AN, Raoult D et al.. Antibodies in cat sera from southern Africa react with antigens of Ehrlichia canis. Vet Rec. 1996; 138:364-5.
  • [17]Maruyama S, Sakai T, Morita Y, Tanaka S, Kabeya H, Boonmar S et al.. Prevalence of Bartonella species and 16 s rRNA gene types of Bartonella henselae from domestic cats in Thailand. Am J Trop Med Hyg. 2001; 65:783-7.
  • [18]Yin-Chachun, Liu-Hungjen, Lin-Suenchuain, Liao-Minghuei, Wu-Yeonghuey. Identification of Ehrlichia canis in cats by nested polymerase chain reaction and nucleotide sequence analysis. Taiwan Vet J. 2003; 29:122-8.
  • [19]Solano-Gallego L, Hegarty B, Espada Y, Llull J, Breitschwerdt E. Serological and molecular evidence of exposure to arthropod-borne organisms in cats from northeastern Spain. Vet Microbiol. 2006; 118:274-7.
  • [20]Ebani VV, Bertelloni F. Serological evidence of exposure to Ehrlichia canis and Anaplasma phagocytophilum in Central Italian healthy domestic cats. Ticks Tick Borne Dis. 2014; 5:668-71.
  • [21]Lima MLF, Soares PT, Ramos CAN, Araújo FR, Ramos RAN, Souza IIF et al.. Molecular detection of Anaplasma platys in a naturally-infected cat in Brazil. Brazilian J Microbiol. 2010; 41:381-5.
  • [22]Qurollo BA, Balakrishnan N, Cannon CZ, Maggi RG, Breitschwerdt EB. Co-infection with Anaplasma platys, Bartonella henselae, Bartonella koehlerae and ‘Candidatus Mycoplasma haemominutum’ in a cat diagnosed with splenic plasmacytosis and multiple myeloma. J Feline MedSurg. 2014; 16:713-20.
  • [23]Breitschwerdt EB, Hancock SI, Hegarty BC, Martin-Granel J, Jumelle P, Barbault-Jumelle M et al.. Ehrlichiose feline: identification genetique de l’agent chez deux chats. Prat Med Chir Anim Comp. 2002; 37:235-8.
  • [24]Breitschwerdt EB, Abrams-Ogg AC, Lappin MR, Bienzle D, Hancock SI, Cowan SM et al.. Molecular evidence supporting Ehrlichia canis-like infection in cats. J Vet Intern Med. 2002; 16:642-9.
  • [25]de Oliveira LS, Moura LC, Oliveira KA, Agostini M, de Oliveira AC, de Almeida MR et al.. Molecular detection of Ehrlichia canis in cats in Brazil. Clin Microbiol Infect. 2009; 15 Suppl 2:53-4.
  • [26]Qurollo BA, Chandrashekar R, Hegarty BC, Beall MJ, Stillman B, Liu J et al.. Vector-borne pathogen exposure in dogs in North America and the Caribbean as assessed by Borrelia burgdorferi, Anaplasma and Ehrlichia species-specific peptides. Infect Ecol Epidemiol. 2014; 4:24699.
  • [27]Starkey LA, Barrett AW, Chandrashekar R, Stillman BA, Tyrrell P, Thatcher B et al.. Development of antibodies to and PCR detection of Ehrlichia spp. in dogs following natural tick exposure. Vet Microbiol. 2014; 173:379-84.
  • [28]Levy SA, O’Connor TP, Hanscom JL, Shields P. Evaluation of a canine C6 ELISA lyme disease test for the determination of the infection status of cats naturally exposed to Borrelia burgdorferi. Vet Therapeutics. 2003; 4:172-7.
  • [29]Chandrashekar R, Daniluk D, Moffitt S, Lorentzen L, Williams J. Serologic diagnosis of equine borreliosis: evaluation of an in-clinic enzyme-linked immunosorbent assay (SNAP 4Dx). Intern J Appl Res Vet Med. 2008; 3:145-50.
  • [30]Duell JR, Carmichael R, Herrin BH, Holbrook TC, Talley J, Little SE. Prevalence and species of ticks on horses in central Oklahoma. J Med Entomol. 2013; 50:1330-3.
  • [31]O’Nion VL, Montilla HJ, Qurollo BA, Maggi RG, Hegarty BC, Tornquist J et al.. Potentially novel Ehrlichia species in horses, Nicaragua. Emerg Infect Dis. 2015; 21:335-8.
  • [32]Dahlgren FS, Mandel EJ, Krebs JW, Massung RF, McQuiston JH. Increasing incidence of Ehrlichia chaffeensis and Anaplasma phagocytophilum in the United States, 2000–2007. Am J Trop Med Hyg. 2011; 85:124-31.
  • [33]McQuiston JH, McCall CL, William L, Nicholson WL. Ehrlichiosis and related infections. J Am Vet Med Assoc. 2003; 223:1750-6.
  • [34]Thomas RJ, Dumler JS, Carlyon JA. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev Anti Infect Ther. 2009; 7:709-22.
  • [35]Eddlestone SM, Diniz PPVP, Neer TM, Gaunt SD, Corstvet R, Cho D et al.. Doxycycline clearance of experimentally induced chronic Ehrlichia canis infection in dogs. J Vet Intern Med. 2007; 21:1237-42.
  • [36]Qurollo BA, Riggins D, Comyn A, Zewde MT, Breitschwerdt EB. Development and validation of a sensitive and specific sodB-based quantitative PCR assay for molecular diagnosis of Ehrlichia species. J Clin Microbiol. 2014; 52:4030-2.
  • [37]Breitschwerdt EB, Hegarty BC, Hancock SI. Sequential evaluation of dogs naturally infected with Ehrlichia canis, Ehrlichia chaffeensis, Ehrlichia equi, Ehrlichia ewingii, or Bartonella vinsonii. J Clin Microbiol. 1998; 36:2645-51.
  • [38]Yancey CB, Hegarty BC, Qurollo BA, Levy MG, Birkenheuer AJ, Weber DJ et al.. Regional seroreactivity and vector-borne disease co-exposures in dogs in the United States from 2004–2010: utility of canine surveillance. Vector Borne Zoonotic Dis. 2014; 10:724-32.
  • [39]Maggi RG, Birkenheuer AJ, Hegarty BC, Bradley JM, Levy MG, Breitschwerdt EB. Advantages and limitations of serological and molecular panels for the diagnosis of vector-borne infectious diseases in dogs. Parasit Vectors. 2014; 7:127. BioMed Central Full Text
  文献评价指标  
  下载次数:2次 浏览次数:12次