期刊论文详细信息
Virology Journal
Airborne spread and infection of a novel swine-origin influenza A (H1N1) virus
Tongjie Chai5  Zengmin Miao1  Peiqiang Hou3  Huili Yang3  Jing Gao5  Hao Wang5  Mingchao Cui5  Baozhi Wei5  Zhihao Liu5  Mingliang Zhang5  Qinglei Li5  Xinxian Li5  Hongliang Dong5  Yufa Zhou6  Xiaoxia Li1  Ruihua Ma4  Xin Li5  Hongna Zhang2 
[1] Taishan Medical University, Tai’an, China;Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, Tai’an, Shandong, China;Centre for Disease Control, Tai’an, the People’s Republic of China, Tai’an, China;Affiliated Hospital of the Shandong Agricultural University, Tai’an, China;College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China;The Animal Husbandry Bureau of Tai’an City, Tai’an, China
关键词: Guinea pig;    Pig;    Airborne transmission;    Epidemic;    S-O 2009 IV;   
Others  :  1149472
DOI  :  10.1186/1743-422X-10-204
 received in 2013-01-05, accepted in 2013-05-07,  发布年份 2013
PDF
【 摘 要 】

Background

The novel swine-origin influenza A (H1N1) virus (S-O 2009 IV) can cause respiratory infectious diseases in humans and pigs, but there are few studies investigating the airborne spread of the virus. In January 2011, a swine-origin H1N1 epidemic emerged in eastern China that rapidly spread to neighboring farms, likely by aerosols carried by the wind.

Methods

In this study, quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect viruses in air samples from pig farms. Based on two aerosol infection models (Pig and guinea pig), we evaluated aerosol transmission and infection of the novel S-O 2009 IV isolate.

Results

Three novel S-O 2009 IV were isolated from the diseased pig. The positive rate and viral loads of air samples were 26.1% and 3.14-5.72 log10copies/m3 air, respectively. In both pig and guinea pig infection models, the isolate (A/swine/Shandong/07/2011) was capable of forming aerosols and infected experimental animals at a range of 2.0-4.2 m by aerosols, but aerosol route was less efficient than direct contact.

Conclusions

The results indicated that S-O 2009 IV is able to be aerosolized by infected animals and to be transmitted to susceptible animals by airborne routes.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405073406636.pdf 732KB PDF download
Figure 4. 41KB Image download
Figure 3. 114KB Image download
Figure 2. 68KB Image download
Figure 1. 83KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Zepeda-Lopez HM, Perea-Araujol L, Miliar-Garca1 A, Dominguez-Lopez A, Xoconostle-Cazarez B, Lara-Padilla E: Inside the outbreak of the 2009 influenza A(H1N1)v virus in Mexico. PLoS One 2010, 5:e13256.
  • [2]Novel swine-origin influenza A(H1N1) virus investigation team: Emergence of a novel swine-origin influenza A(H1N1) virus in humans. N Engl J Med 2009, 360:2605-2615.
  • [3]Seema J, Laurie K, Anna MB, Ann MS, Stephen RB, Janice L: Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N Engl J Med 2009, 361:1935-1944.
  • [4]Jonathan RK: Swine influenza. J Clin Pathol 2009, 62:577-578.
  • [5]Vincent JM, de Emmie W, van den Judith MA, van den B, Sander H, Eefje JAS, Theo MB: Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 2009, 325:481-483.
  • [6]Wang HJ: Update of influenza A [H1N1]. Jilin Medicine 2011, 32:133-135.
  • [7]Maines TR, Jayaraman A, Belser JA, Wadford DA, Pappas C, Zeng H: Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 2009, 325(5939):484-487.
  • [8]Tellier R: Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 2009, 6:S783-S790.
  • [9]Xihua Y: The infection and control of microoganism aerosol-concurrently treats of prevent in the SARS virus. Contamination Control & Air-Conditioning Technology 2003, 4:25-29.
  • [10]Wit E, Vincent JM, Riel D, Walter EPB, Rimmelzwaan GF, Kuiken T: Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 2010, 84:1597-1606.
  • [11]Piso RJ, Albrecht Y, Handschin P, Bassett S: Low transmission rate of 2009 H1N1 influenza duringa long-distance bus trip. Infection 2011, 39:149-153.
  • [12]Sun YP, Bi YH, Pu J, Hu YX, Wang JJ, Gao HJ: Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses. PLoS One 2010, 5:e15537.
  • [13]Howden KJ, Brockhoff EJ, Caya FD, Mclecod LJ, Lavoie M, Ing JD: An investigation into human pandemic influenza virus (H1N1)2009 on an Albeta swine farm. Can Vet J 2009, 50:p1153-p1161.
  • [14]Zhao G, Pan JJ, Gu XB, Lu XL, Li QH, Hu J: Isolation and phylogenetic analysis of avian-origin European H1N1 swine influenza viruses in Jiangsu China. Virus Genes 2011, 44:11.
  • [15]Yang W, Marr LC: Dynamics of airborne influenza A viruses indoors and dependence on humidity. PLoS One 2011, 6:e21481.
  • [16]Gustin KM, Belser JA, Wadford DA, Pearce MB, Katz JM, Tumpey TM: Influenza virus aerosol exposure and analytical system for ferrets. PNAS 2011, 108:8432-8437.
  • [17]Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R: Measurement of airborne influenza virus in a hospital emergency department. Clin Infect Dis 2009, 48:438-440.
  • [18]Andersen AA: New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacterial 1958, 76:471-484.
  • [19]Chai TJ, Ma RH, Mueller W, Wang HR: Study on microbiological floras in air of supplying materials workshop in a biological refuse treatment Plant. J Environ Health 2000, 6:358-363.
  • [20]Zhang J, Yang WZ, Guo YJ, Xu H, Zhang Y, Li Z: Epidemiologic characteristics of influenza in China from 2001 to 2003. Chin J Epidemiol 2004, 25:461-465.
  • [21]Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL: Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol 2007, 88:2035-2041.
  • [22]Brachman PS, Ehrlich R, Eichenwald HF, Gabelli VJ, Kethley TW, Madin SH: Standard sampler for assay of airborne microorganisms. Science 1964, 144:1295.
  • [23]Chapin A, Rule A, Gibson K, Buckley T, Schwab K: Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ Health Perspect 2005, 113:137-142.
  • [24]Poon LL, Chan KH, Smith GJ, Leung CSW, Guan Y, Yuen KY: Molecular detection of a novel human influenza (H1N1) of pandemic potentia by conventional and real-time quantitative RT-PCR assays. Clin Chem 2009, 55:1555-1558.
  • [25]Luo XS, Li KM, Huang JD, Lin JR, Li JX: Seroprevalence of swine influenza H1N1 virus. C J Vet Med 2011, 47:39-40.
  • [26]Yao ML, Zhang XX, Gao J, Chai TJ, Miao ZM, Ma W: The occurrence and transmission characteristic of airborne H9N2 avian influenza virus. Berl Munch Tieraerztl Wochschr 2011, 124:10-15.
  • [27]Li XX, Chai TJ, Wang ZL, Song CP, Cao HJ, Liu JB: Occurrence and transmission of Newcastle disease virus aerosol originating from infected chickens under experimental conditions. Vet Microbiol 2009, 136:226-232.
  • [28]Lowen AC, Steel J, Mubareka S, Palese P: High temperature (30°C) blocks aerosol but not contact transmission of influenza virus. J Virol 2008, 82:5650-5652.
  • [29]Lowen AC, Mubareka S, Tumpey TM, García-Sastre A, Palese P: The guinea pig as a transmission model for human influenza viruses. PNAS 2006, 103(26):9988-9992.
  • [30]Yao HC: Experiment guidance for veterinarian microbiology. 25th edition. Beijing: China Agriculture Press; 2007:105-107.
  文献评价指标  
  下载次数:6次 浏览次数:13次