期刊论文详细信息
Particle and Fibre Toxicology
Evidence to support natural hybridization between Anopheles sinensis and Anopheles kleini (Diptera: Culicidae): possibly a significant mechanism for gene introgression in sympatric populations
Viraphong Lulitanond4  Atiporn Saeung5  Chairat Tantrawatpan3  Pewpan M Intapan2  Gi-Sik Min1  Wej Choochote5 
[1] Department of Biological Sciences, Inha University, Incheon 402-751, South Korea;Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathum Thani 12121, Thailand;Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
关键词: Introgression;    Cytochrome c oxidase subunit I;    Second internal transcribed spacer;    Hybridization experiment;    An. kleini;    Anopheles sinensis;   
Others  :  814433
DOI  :  10.1186/1756-3305-7-36
 received in 2013-11-23, accepted in 2014-01-18,  发布年份 2014
PDF
【 摘 要 】

Background

Malaria caused by Plasmodium vivax is still a public health problem in the Republic of Korea (ROK), particularly regarding the recent re-emergence of this malarial species near the demilitarized zone in northwestern Paju City, Gyeonggi-do Province. Currently, at least 4 species (An. kleini, An. pullus, An. belenrae and An. lesteri) of the Hyrcanus Group are reported as possible natural vectors of vivax malaria in the ROK, and An. sinensis, which is the most dominant species, has long been incriminated as an important natural vector of this P. vivax. However, An. sinensis was ranked recently as a low potential vector. According to the discovery of natural hybrids between An. sinensis (a low potential vector for P. vivax) and An. kleini (a high potential vector for P. vivax) in Paju City, intensive investigation of this phenomenon is warranted under laboratory conditions.

Methods

Mosquitoes were collected during 2010-2012 from Paju City, ROK. Hybridization experiments used iso-female line colonies of these anophelines together with DNA analysis of ribosomal DNA [second internal transcribed spacer (ITS2)] and mitochondrial DNA [cytochrome c oxidase subunit I (COI)] of the parental colonies, F1-hybrids and repeated backcross progenies were performed intensively by using a PCR-based assay and pyrosequencing technology.

Results

The results from hybridization experiments and molecular investigations revealed that the mitochondrial COI gene was introgressed from An. sinensis into An. kleini. The An. sinensis progenies obtained from consecutive repeated backcrosses in both directions, i.e., F2-11 progeny [(An. sinensis x An. kleini) x An. sinensis] and F3-5 progeny [(An. kleini x An. sinensis) x An. kleini] provided good supportive evidence.

Conclusions

This study revealed introgression of the mitochondrial COI gene between An. sinensis and An. kleini through consecutive repeated backcrosses under laboratory conditions. This new body of knowledge will be emphasized in reliable promising strategies in order to replace the population of An. kleini as a high potential vector for P. vivax, with that of a low potential vector, An. sinensis, through the mechanism of gene introgression in nature.

【 授权许可】

   
2014 Choochote et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710034644551.pdf 1759KB PDF download
Figure 4. 149KB Image download
Figure 3. 76KB Image download
Figure 2. 107KB Image download
20150403192417562.pdf 1754KB PDF download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Harbach RE: The phylogeny and classification of Anopheles. In Anopheles mosquitoes-new insights into malaria vectors. Edited by Manguin S. Croatia: InTech; 2013:3-55.
  • [2]Harrison BA: A lectotype designation and description for Anopheles (An.) sinensis Wiedemann 1828, with a discussion of the classification and vector status of this and some other Oriental Anopheles. Mosq Syst 1973, 5:1-13.
  • [3]Ree HI, Hwang UW, Lee IY, Kim TE: Daily survival and human blood index of Anopheles sinensis, the vector species of malaria in Korea. J Am Mosq Control Assoc 2001, 17:67-72.
  • [4]Whang IJ, Jung J, Park JK, Min GS, Kim W: Intragenomic length variation of the ribosomal DNA intergenic spacer in a malaria vector, Anopheles sinensis. Mol Cells 2002, 14:158-162.
  • [5]Ma Y, Xu J: The hyrcanus group of Anopheles (Anopheles) in China (Diptera: Culicidae): species discrimination and phylogenetic relationships inferred by ribosomal DNA internal transcribed spacer 2 sequences. J Med Entomol 2005, 42:610-619.
  • [6]Lee WJ, Klein TA, Kim HC, Choi YM, Yoon SH, Chang KS, Chong ST, Lee IY, Jones JW, Jacobs JS, Sattabongkot J, Park JS: Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the Republic of Korea. J Med Entomol 2007, 44:1086-1090.
  • [7]Joshi D, Choochote W, Park MH, Kim JY, Kim TS, Suwonkerd W, Min GS: The susceptibility of Anopheles lesteri to infection with Korean strain Plasmodium vivax. Malar J 2009, 12(8):42.
  • [8]Rueda LM, Li C, Kim HC, Klein TA, Foley DH, Wilkerson RC: Anopheles belenrae, a potential vector of Plasmodium vivax in the Republic of Korea. J Am Mosq Control Assoc 2010, 26:430-432.
  • [9]Joshi D, Kim JY, Choochote W, Park MH, Min GS: Preliminary vivax malaria vector competence for three members of the Anopheles hyrcanus group in the Republic of Korea. J Am Mosq Control Assoc 2011, 27:312-314.
  • [10]Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2011, 4:89. BioMed Central Full Text
  • [11]Zhu G, Xia H, Zhou H, Li J, Lu F, Liu Y, Cao J, Gao Q, Sattabongkot J: Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China. Parasit Vectors 2013, 6:176. BioMed Central Full Text
  • [12]Pan JY, Zhou SS, Zheng X, Huang F, Wang DQ, Shen YZ, Su YP, Zhou GC, Liu F, Jiang JJ: Vector capacity of Anopheles sinensis in malaria outbreak areas of central China. Parasit Vectors 2012, 5:136. BioMed Central Full Text
  • [13]Zhou SS, Zhang SS, Wang JJ, Zheng X, Huang F, Li WD, Xu X, Zhang HW: Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasit Vectors 2012, 5:106. BioMed Central Full Text
  • [14]Makhawi AM, Liu XB, Yang SR, Liu QY: Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China. Parasit Vectors 2013, 6:290. BioMed Central Full Text
  • [15]Sasa M: Human filariasis: A global survey of epidemiology and control. Tokyo: University of Tokyo Press; 1976.
  • [16]Saeung A, Hempolchom C, Baimai V, Thongsahuan S, Taai K, Jariyapan N, Chaithong U, Choochote W: Susceptibility of eight species members in the Anopheles hyrcanus group to nocturnally subperiodic Brugia malayi. Parasit Vectors 2013, 6:5. BioMed Central Full Text
  • [17]Zhang HL: The natural infection rate of mosquitoes by Japanese encephalitis B virus in Yunnan Province. Zhonghua Yu Fang Yi Xue Za Zhi 1990, 24:265-267.
  • [18]Kanojia PC, Shetty PS, Geevarghese G: A long-term study on vector abundance & seasonal prevalence in relation to the occurrence of Japanese encephalitis in Gorakhpur district, Uttar Pradesh. Indian J Med Res 2003, 117:104-110.
  • [19]Chai JY: Re-emerging Plasmodium vivax malaria in the Republic of Korea. Korean J Parasitol 1999, 37:129-143.
  • [20]K-NIH: Korea-National Institute of Health: Manual for malaria control. Seoul: Korea: Korea-National Institute of Health (K-NIH); 2001.
  • [21]Ree HI: Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. In Today’s malaria epidemiology and vector control proceedings of the 22nd seminar of tropical medicine: 21 February 2002; Seoul. Edited by Yong TS. South Korea: Yonsei Medical Center; 2002:33-52.
  • [22]K-CDC: Korea-Center for Disease Control and Prevention: Provisional cases of selected notifiable disease. K-CDC Communicable Disease Weekly Report (CDWR): 25-31 December 2005, Volume 53.1-32.
  • [23]Temu EA, Hunt RH, Coetzee M, Minjas JN, Shiff CJ: Detection of hybrids in natural populations of the Anopheles gambiae complex by the rDNA-based, PCR method. Ann Trop Med Parasitol 1997, 91:963-965.
  • [24]Walton C, Sharpe RG, Pritchard SJ, Thelwell NJ, Butlin RK: Molecular identification of mosquito species. Biol J Linn Soc 1999, 68:241-256.
  • [25]Van Bortel W, Trung HD, Roelants P, Harbach RE, Backeljau T, Coosemans M: Molecular identification of Anopheles minimus s.l. beyond distinguishing the members of the species complex. Insect Mol Biol 2000, 9:335-340.
  • [26]Kengne P, Trung HD, Baimai V, Coosemans M, Manguin S: A multiplex PCR-based method derived from random amplified polymorphic DNA (RAPD) markers for the identification of species of the Anopheles minimus group in Southeast Asia. Insect Mol Biol 2001, 10:427-435.
  • [27]Joshi D, Choochote W, Min GS: Short report: natural hybrid between Anopheles kleini and Anopheles sinensis. Am J Trop Med Hyg 2009, 81:1020-1022.
  • [28]Choochote W, Saeung A: Systematic techniques for the recognition of Anopheles species complexes. In Anopheles mosquitoes-new insights into malaria vectors. Edited by Manguin S. Croatia: InTech; 2013:57-79.
  • [29]Tanaka K, Mizusawa K, Saugstad ES: A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae). Contrib Am Entomol Inst 1979, 16:1-985.
  • [30]Joshi D, Park MH, Saeung A, Choochote W, Min GS: Multiplex assay to identify Korean vectors of malaria. Mol Ecol Resour 2010, 10:748-750.
  • [31]Saeung A, Otsuka Y, Baimai V, Somboon P, Pitasawat B, Tuetun B, Junkum A, Takaoka H, Choochote W: Cytogenetic and molecular evidence for two species in the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res 2007, 101:1337-1344.
  • [32]Li C, Lee JS, Groebner JL, Kim HC, Klein T, O’Guinn ML, Wilkerson RC: A newly recognized species in the Anopheles hyrcanus group and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa 2005, 939:1-8.
  • [33]Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 1994, 3:294-299.
  • [34]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [35]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [36]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [37]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolution genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [38]Choochote W: Evidence to support karyotypic variation of the mosquito, Anopheles peditaeniatus in Thailand. J Insect Sci 2011, 11:10.
  • [39]Park SJ, Choochote W, Jitpakdi A, Junkum A, Kim SJ, Jariyapan N: Evidence for a conspecific relationship between two morphologically and cytologically different forms of Korean Anopheles pullus mosquito. Mol Cells 2003, 16:354-360.
  • [40]Tantrawatpan C, Intapan PM, Janwan P, Sanpool O, Lulitanond V, Srichantaratsamee C, Anamnart W, Maleewong W: Molecular identification of Paragonimus species by DNA pyrosequencing technology. Parasitol Int 2013, 62:341-345.
  • [41]Grant PR, Grant BR, Petren K: Hybridization in the recent past. Am Nat 2005, 166:56-67.
  • [42]Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, Butlin RK: Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 2000, 17:962-974.
  • [43]Thelwell NJ, Huisman RA, Harbach RE, Butlin RK: Evidence for mitochondrial introgression between Anopheles bwambae and Anopheles gambiae. Insect Mol Biol 2000, 9:203-210.
  • [44]Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Touré Y, Sagnon N: Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation. Proc Natl Acad Sci USA 2003, 100:10818-10823.
  • [45]Slotman M, Della Torre A, Powell JR: Female sterility in hybrids between Anopheles gambiae and A. arabiensis, and the causes of Haldane’s rule. Evolution 2005, 59:1016-1026.
  • [46]Slotman MA, Della Torre A, Calzetta M, Powell JR: Differential introgression of chromsomal regions between Anopheles gambiae and An. arabiensis. Am J Trop Med Hyg 2005, 73:326-335.
  • [47]Morgan K, Linton YM, Somboon P, Saikia P, Dev V, Socheat D, Walton C: Inter-specific gene flow dynamics during the Pleistocene-dated speciation of forest-dependent mosquitoes in Southeast Asia. Mol Ecol 2010, 19:2269-2285.
  • [48]Presgraves DC, Orr HA: Haldane’s rule in taxa lacking a hemizygous X. Science 1998, 282:952-954.
  • [49]Orr HA: Haldane’s rule. Annu Rev Ecol Evol Syst 1997, 28:195-218.
  • [50]Davidson G: The five mating-types in the Anopheles gambiae complex. Riv Malariol 1964, 43:167-183.
  • [51]Baimai V, Andre RG, Harrison BA, Kijchalao U, Panthusiri L: Crossing and chromosomal evidence for two additional sibling species within the taxon Anopheles dirus Peyton and Harrison (Diptera: Culicidae) in Thailand. Proc Entomol Soc Wash 1987, 89:157-166.
  • [52]Petit RJ, Excoffier L: Gene flow and species delimitation. Trends Ecol Evol 2009, 24:386-393.
  • [53]Sreekumar C, Hill DE, Miska KB, Vianna MC, Yan L, Myers RL, Dubey JP: Genotyping and detection of multiple infections of Toxoplasma gondii using Pyrosequencing. Int J Parasitol 2005, 35:991-999.
  • [54]Monstein H, Nikpour-Badr S, Jonasson J: Rapid molecular identification and subtyping of Helicobacter pylori by pyrosequencing of the 16S rDNA variable V1 and V3 regions. FEMS Microbiol Lett 2001, 199:103-107.
  • [55]Wahab T, Hjalmarsson S, Wollin R, Engstrand L: Pyrosequencing Bacillus anthracis. Emerg Infect Dis 2005, 11:1527-1531.
  • [56]O’Meara D, Wilbe K, Leitner T, Hejdeman B, Albert J, Lundeberg J: Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. J Clin Microbiol 2001, 39:464-473.
  • [57]Elahi E, Pourmand N, Chaung R, Rofoogaran A, Boisver J, Samimi-Rad K, Davis RW, Ronaghi M: Determination of hepatitis C virus genotype by Pyrosequencing. J Virol Methods 2003, 109:171-176.
  • [58]Stensvold CR, Traub RJ, von Samson-Himmelstjerna G, Jespersgaard C, Nielsen HV, Thompson RC: Blastocystis: subtyping isolates using pyrosequencing technology. Exp Parasitol 2007, 116:111-119.
  • [59]Stensvold CR, Lebbad M, Verweij JJ, Jespersgaard C, von Samson-Himmelstjerna G, Nielsen SS, Nielsen HV: Identification and delineation of members of the Entamoeba complex by pyrosequencing. Mol Cell Probes 2010, 24:403-406.
  • [60]Lulitanond V, Intapan PM, Tantrawatpan C, Sankuntaw N, Sanpool O, Janwan P, Maleewong W: Molecular markers for detection and differentiation of Plasmodium falciparum and Plasmodium vivax in human blood samples by pyrosequencing. J Clin Microbiol 2012, 50:1455-1457.
  • [61]Neafsey DE, Lawniczak MK, Park DJ, Redmond SN, Coulibaly MB, Traoré SF, Sagnon N, Costantini C, Johnson C, Wiegand RC, Collins FH, Lander ES, Wirth DF, Kafatos FC, Besansky NJ, Christophides GK, Muskavitch MA: SNP genotyping defines complex gene-flow boundaries among African malaria vector mosquitoes. Science 2010, 330:514-517.
  • [62]Reidenbach KR, Neafsey DE, Costantini C, Sagnon N, Simard F, Ragland GJ, Egan SP, Feder JL, Muskavitch MA, Besansky NJ: Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol 2012, 4:1202-1212.
  • [63]Weetman D, Wilding CS, Steen K, Pinto J, Donnelly MJ: Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms. Mol Biol Evol 2012, 29:279-291.
  • [64]Curtis C: The case for malaria control by genetic manipulation of its vectors. Parasitol Today 1994, 10:371-374.
  • [65]Rheindt FE, Edwards SV: Genetic introgression: an integral but neglected component of speciation in birds. Auk 2011, 128:620-632.
  • [66]Rottschaefer SM, Riehle MM, Coulibaly B, Sacko M, Niaré O, Morlais I, Traoré SF, Vernick KD, Lazzaro BP: Exceptional diversity, maintenance of polymorphism, and recent directional selection on the APL1 malaria resistance genes of Anopheles gambiae. PLoS Biol 2011, 9:e1000600.
  • [67]White BJ, Lawniczak MK, Cheng C, Coulibaly MB, Wilson MD, Sagnon N, Costantini C, Simard F, Christophides GK, Besansky NJ: Adaptive divergence between incipient species of Anopheles gambiae increases resistance to Plasmodium. Proc Natl Acad Sci USA 2011, 108:244-249.
  • [68]Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, Guillet P, Raymond M: The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol 2000, 9:451-455.
  • [69]Diabate A, Baldet T, Chandre C, Dabire KR, Kengne P, Guiguemde TR, Simard F, Guillet P, Hemingway J, Hougard JM: KDR mutation, a genetic marker to assess events of introgression between the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of West Africa. J Med Entomol 2003, 40:195-198.
  • [70]Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M: Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s.s. PLoS One 2008, 3:e2172.
  • [71]Morgan K, Somboon P, Walton C: Understanding Anopheles diversity in Southeast Asia and its applications for malaria control. In Anopheles mosquitoes-new insights into malaria vectors. Edited by Manguin S. Croatia: InTech; 2013:327-355.
  文献评价指标  
  下载次数:8次 浏览次数:6次