期刊论文详细信息
Virology Journal
Site directed biotinylation of filamentous phage structural proteins
Jonathan M Gershoni1  Larisa Smelyanski1 
[1] Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
关键词: combinatorial libraries;    phage display;    biotinylation;    filamentous bacteriophage;   
Others  :  1155731
DOI  :  10.1186/1743-422X-8-495
 received in 2011-07-03, accepted in 2011-11-01,  发布年份 2011
PDF
【 摘 要 】

Filamentous bacteriophages have been used in numerous applications for the display of antibodies and random peptide libraries. Here we describe the introduction of a 13 amino acid sequence LASIFEAQKIEWR (designated BT, which is biotinylated in vivo by E. coli) into the N termini of four of the five structural proteins of the filamentous bacteriophage fd (Proteins 3, 7, 8 and 9). The in vivo and in vitro biotinylation of the various phages were compared. The production of multifunctional phages and their application as affinity reagents are demonstrated.

【 授权许可】

   
2011 Smelyanski and Gershoni; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407115926738.pdf 799KB PDF download
Figure 5. 34KB Image download
Figure 4. 38KB Image download
Figure 3. 37KB Image download
Figure 2. 52KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Cronan JE Jr: Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem 1990, 265(18):10327-10333.
  • [2]Fall RR, Nervi AM, Alberts AW, Vagelos PR: Acetyl CoA carboxylase: isolation and characterization of native biotin carboxyl carrier protein. Proc Natl Acad Sci USA 1971, 68(7):1512-1515.
  • [3]Samols D, Thornton CG, Murtif VL, Kumar GK, Haase FC, Wood HG: Evolutionary conservation among biotin enzymes. J Biol Chem 1988, 263(14):6461-6464.
  • [4]Green NM: Avidin. Adv Protein Chem 1975, 29:85-133.
  • [5]Wilchek M, Bayer EA: The avidin-biotin complex in bioanalytical applications. Anal Biochem 1988, 171(1):1-32.
  • [6]Wilchek M, Bayer EA, Livnah O: Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction. Immunol Lett 2006, 103(1):27-32.
  • [7]Li SJ, Cronan JE Jr: The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 1992, 267(2):855-863.
  • [8]Reche P, Li YL, Fuller C, Eichhorn K, Perham RN: Selectivity of post-translational modification in biotinylated proteins: the carboxy carrier protein of the acetyl-CoA carboxylase of Escherichia coli. Biochem J 1998, 329(Pt 3):589-596.
  • [9]Barker DF, Campbell AM: The birA gene of Escherichia coli encodes a biotin holoenzyme synthetase. J Mol Biol 1981, 146(4):451-467.
  • [10]Chapman-Smith A, Cronan JE Jr: In vivo enzymatic protein biotinylation. Biomol Eng 1999, 16(1-4):119-125.
  • [11]Cronan JE Jr, Reed KE: Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis. Methods Enzymol 2000, 326:440-458.
  • [12]Stolz J, Ludwig A, Sauer N: Bacteriophage lambda surface display of a bacterial biotin acceptor domain reveals the minimal peptide size required for biotinylation. FEBS Lett 1998, 440(1-2):213-217.
  • [13]Schatz PJ: Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993, 11(10):1138-1143.
  • [14]Enshell-Seijffers D, Smelyanski L, Gershoni JM: The rational design of a 'type 88' genetically stable peptide display vector in the filamentous bacteriophage fd. Nucleic Acids Res 2001, 29(10):E50-50.
  • [15]Freund NT, Enshell-Seijffers D, Gershoni JM: Phage display selection, analysis, and prediction of B cell epitopes. Curr Protoc Immunol 2009, Chapter 9(Unit 9):8.
  • [16]Enshell-Seijffers D, Denisov D, Groisman B, Smelyanski L, Meyuhas R, Gross G, Denisova G, Gershoni JM: The mapping and reconstitution of a conformational discontinuous B-cell epitope of HIV-1. J Mol Biol 2003, 334(1):87-101.
  • [17]Enshell-Seijffers D, Smelyanski L, Vardinon N, Yust I, Gershoni JM: Dissection of the humoral immune response toward an immunodominant epitope of HIV: a model for the analysis of antibody diversity in HIV+ individuals. FASEB J 2001, 15(12):2112-2120.
  • [18]Petrenko VA, Smith GP, Gong X, Quinn T: A library of organic landscapes on filamentous phage. Protein Eng 1996, 9(9):797-801.
  • [19]Scott JK, Smith GP: Searching for peptide ligands with an epitope library. Science 1990, 249(4967):386-390.
  • [20]Lerner RA, Kang AS, Bain JD, Burton DR, Barbas CF: Antibodies without immunization. Science 1992, 258(5086):1313-1314.
  • [21]Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol 1994, 12:433-455.
  • [22]Sidhu SS: Engineering M13 for phage display. Biomol Eng 2001, 18(2):57-63.
  • [23]Marvin DA: Filamentous phage structure, infection and assembly. Curr Opin Struct Biol 1998, 8(2):150-158.
  • [24]Denisova G, Stern B, Raviv D, Zwickel J, Smorodinsky NI, Gershoni JM: Humoral immune response to immunocomplexed HIV envelope glycoprotein 120. AIDS Res Hum Retroviruses 1996, 12(10):901-909.
  • [25]Hunter GJ, Rowitch DH, Perham RN: Interactions between DNA and coat protein in the structure and assembly of filamentous bacteriophage fd. Nature 1987, 327(6119):252-254.
  • [26]Greenwood J, Willis AE, Perham RN: Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 1991, 220(4):821-827.
  • [27]Smith GP: Surface Display and Peptide Libraries. Gene 1993, 128:1-2.
  • [28]Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE: Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (N Y) 1995, 13(4):378-382.
  • [29]Russel M, Model P: Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol 1989, 63(8):3284-3295.
  • [30]Endemann H, Model P: Location of filamentous phage minor coat proteins in phage and in infected cells. J Mol Biol 1995, 250(4):496-506.
  • [31]Gao C, Mao S, Lo CH, Wirsching P, Lerner RA, Janda KD: Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA 1999, 96(11):6025-6030.
  • [32]Nakamura M, Tsumoto K, Kumagai I, Ishimura K: A morphologic study of filamentous phage infection of Escherichia coli using biotinylated phages. FEBS Lett 2003, 536(1-3):167-172.
  • [33]Sun W, Brovko L, Griffiths M: Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. J Ind Microbiol Biotechnol 2001, 27(2):126-128.
  • [34]Ansuini H, Cicchini C, Nicosia A, Tripodi M, Cortese R, Luzzago A: Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res 2002, 30(15):e78.
  • [35]Russel M: Moving through the membrane with filamentous phages. Trends Microbiol 1995, 3(6):223-228.
  • [36]Russel M, Linderoth NA, Sali A: Filamentous phage assembly: variation on a protein export theme. Gene 1997, 192(1):23-32.
  • [37]Malik P, Terry TD, Gowda LR, Langara A, Petukhov SA, Symmons MF, Welsh LC, Marvin DA, Perham RN: Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 1996, 260(1):9-21.
  • [38]Rakonjac J, Model P: Roles of pIII in filamentous phage assembly. J Mol Biol 1998, 282(1):25-41.
  • [39]Jander G, Cronan JE Jr, Beckwith J: Biotinylation in vivo as a sensitive indicator of protein secretion and membrane protein insertion. J Bacteriol 1996, 178(11):3049-3058.
  • [40]Reed KE, Cronan JE Jr: Escherichia coli exports previously folded and biotinated protein domains. J Biol Chem 1991, 266(18):11425-11428.
  • [41]Fekkes P, Driessen AJ: Protein targeting to the bacterial cytoplasmic membrane. Microbiol Mol Biol Rev 1999, 63(1):161-173.
  • [42]Luirink J, von Heijne G, Houben E, de Gier JW: Biogenesis of inner membrane proteins in Escherichia coli. Annu Rev Microbiol 2005, 59:329-355.
  • [43]Steiner D, Forrer P, Stumpp MT, Pluckthun A: Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 2006, 24(7):823-831.
  • [44]Scholle MD, Kriplani U, Pabon A, Sishtla K, Glucksman MJ, Kay BK: Mapping protease substrates by using a biotinylated phage substrate library. Chembiochem 2006, 7(5):834-838.
  文献评价指标  
  下载次数:68次 浏览次数:35次