期刊论文详细信息
Vascular Cell
Lymphangiogenesis and angiogenesis during human fetal pancreas development
Susana M Chuva de Sousa Lopes2  Eelco JP de Koning3  Françoise Carlotti1  Christine L Mummery4  Ana de Melo Bernardo4  Liesbeth van Iperen4  Matthias S Roost4 
[1] Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands;Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium;Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Center, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
关键词: Fetal development;    Human;    Pancreas;    Lymphangiogenesis;    Angiogenesis;   
Others  :  1131001
DOI  :  10.1186/2045-824X-6-22
 received in 2014-06-26, accepted in 2014-09-26,  发布年份 2014
PDF
【 摘 要 】

Background

The complex endocrine and exocrine functionality of the human pancreas depends on an efficient fluid transport through the blood and the lymphatic vascular systems. The lymphatic vasculature has key roles in the physiology of the pancreas and in regulating the immune response, both important for developing successful transplantation and cell-replacement therapies to treat diabetes. However, little is known about how the lymphatic and blood systems develop in humans. Here, we investigated the establishment of these two vascular systems in human pancreas organogenesis in order to understand neovascularization in the context of emerging regenerative therapies.

Methods

We examined angiogenesis and lymphangiogenesis during human pancreas development between 9 and 22 weeks of gestation (W9-W22) by immunohistochemistry.

Results

As early as W9, the peri-pancreatic mesenchyme was populated by CD31-expressing blood vessels as well as LYVE1- and PDPN-expressing lymphatic vessels. The appearance of smooth muscle cell-coated blood vessels in the intra-pancreatic mesenchyme occurred only several weeks later and from W14.5 onwards the islets of Langerhans also became heavily irrigated by blood vessels. In contrast to blood vessels, LYVE1- and PDPN-expressing lymphatic vessels were restricted to the peri-pancreatic mesenchyme until later in development (W14.5-W17), and some of these invading lymphatic vessels contained smooth muscle cells at W17. Interestingly, between W11-W22, most large caliber lymphatic vessels were lined with a characteristic, discontinuous, collagen type IV-rich basement membrane. Whilst lymphatic vessels did not directly intrude the islets of Langerhans, three-dimensional reconstruction revealed that they were present in the vicinity of islets of Langerhans between W17-W22.

Conclusion

Our data suggest that the blood and lymphatic machinery in the human pancreas is in place to support endocrine function from W17-W22 onwards. Our study provides the first systematic assessment of the progression of lymphangiogenesis during human pancreatic development.

【 授权许可】

   
2014 Roost et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150228170654591.pdf 2570KB PDF download
Figure 6. 74KB Image download
Figure 5. 135KB Image download
Figure 4. 218KB Image download
Figure 3. 343KB Image download
Figure 2. 195KB Image download
Figure 1. 272KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bluestone JA, Herold K, Eisenbarth G: Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010, 464:1293-1300.
  • [2]Halban PA, German MS, Kahn SE, Weir GC: Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 2010, 95:1034-1043.
  • [3]Weir GC, Cavelti-Weder C, Bonner-Weir S: Stem cell approaches for diabetes: towards beta cell replacement. Genome Med 2011, 3:61. BioMed Central Full Text
  • [4]Carlotti F, Zaldumbide A, Ellenbroek JH, Spijker HS, Hoeben RC, de Koning EJ: Beta-cell generation: can rodent studies be translated to humans? J Transplant 2011, 2011:892453.
  • [5]D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006, 24:1392-1401.
  • [6]Wei R, Yang J, Hou W, Liu G, Gao M, Zhang L, Wang H, Mao G, Gao H, Chen G, Hong T: Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies. PLoS One 2013, 8:e72513.
  • [7]Wei R, Yang J, Liu GQ, Gao MJ, Hou WF, Zhang L, Gao HW, Liu Y, Chen GA, Hong TP: Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 2013, 518:246-255.
  • [8]Hayek A, Beattie GM: Processing, storage and experimental transplantation of human fetal pancreatic cells. Ann Transplant 1997, 2:46-54.
  • [9]Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008, 26:443-452.
  • [10]Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012, 61:2016-2029.
  • [11]Polak M, Bouchareb-Banaei L, Scharfmann R, Czernichow P: Early pattern of differentiation in the human pancreas. Diabetes 2000, 49:225-232.
  • [12]Piper K, Ball SG, Keeling JW, Mansoor S, Wilson DI, Hanley NA: Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mech Dev 2002, 116:223-226.
  • [13]Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI, Hanley NA: Beta cell differentiation during early human pancreas development. J Endocrinol 2004, 181:11-23.
  • [14]Wang R, Li J, Lyte K, Yashpal NK, Fellows F, Goodyer CG: Role for beta1 integrin and its associated alpha3, alpha5, and alpha6 subunits in development of the human fetal pancreas. Diabetes 2005, 54:2080-2089.
  • [15]Lyttle BM, Li J, Krishnamurthy M, Fellows F, Wheeler MB, Goodyer CG, Wang R: Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 2008, 51:1169-1180.
  • [16]Sarkar SA, Kobberup S, Wong R, Lopez AD, Quayum N, Still T, Kutchma A, Jensen JN, Gianani R, Beattie GM, Jensen J, Hayek A, Hutton JC: Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 2008, 51:285-297.
  • [17]Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, Wright AJ, Atkinson MA, Rhodes CJ: Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 2012, 97:3197-3206.
  • [18]Riedel MJ, Asadi A, Wang R, Ao Z, Warnock GL, Kieffer TJ: Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 2012, 55:372-381.
  • [19]Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Piper Hanley K, Hanley NA: Development of the human pancreas from foregut to endocrine commitment. Diabetes 2013, 62:3514-3522.
  • [20]Jeon J, Correa-Medina M, Ricordi C, Edlund H, Diez JA: Endocrine cell clustering during human pancreas development. J Histochem Cytochem 2009, 57:811-824.
  • [21]Pan FC, Wright C: Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011, 240:530-565.
  • [22]Ballian N, Brunicardi FC: Islet vasculature as a regulator of endocrine pancreas function. World J Surg 2007, 31:705-714.
  • [23]Lammert E, Cleaver O, Melton D: Induction of pancreatic differentiation by signals from blood vessels. Science 2001, 294:564-567.
  • [24]Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, Gerber HP, Ferrara N, Melton DA: Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 2003, 13:1070-1074.
  • [25]Lukinius A, Jansson L, Korsgren O: Ultrastructural evidence for blood microvessels devoid of an endothelial cell lining in transplanted pancreatic islets. Am J Pathol 1995, 146:429-435.
  • [26]Jansson L, Carlsson PO: Graft vascular function after transplantation of pancreatic islets. Diabetologia 2002, 45:749-763.
  • [27]Brissova M, Fowler M, Wiebe P, Shostak A, Shiota M, Radhika A, Lin PC, Gannon M, Powers AC: Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 2004, 53:1318-1325.
  • [28]Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MC, Galimi F, Romagnoli R, Salizzoni M, Tetta C, Segoloni GP, Camussi G: Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 2012, 21:1305-1320.
  • [29]O’Morchoe CC: Lymphatic system of the pancreas. Microsc Res Tech 1997, 37:456-477.
  • [30]Rasio EA, Hampers CL, Soeldner JS, Cahill GF Jr: Diffusion of glucose, insulin, inulin, and Evans blue protein into thoracic duct lymph of man. J Clin Invest 1967, 46:903-910.
  • [31]Girard JP, Moussion C, Forster R: HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 2012, 12:762-773.
  • [32]Jackson DG: The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 2003, 13:1-7.
  • [33]Jurisic G, Detmar M: Lymphatic endothelium in health and disease. Cell Tissue Res 2009, 335:97-108.
  • [34]Ordonez NG: Immunohistochemical endothelial markers: a review. Adv Anat Pathol 2012, 19:281-295.
  • [35]Adams RH, Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007, 8:464-478.
  • [36]Choi I, Lee S, Hong YK: The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2012, 2:a006445.
  • [37]Jin ZW, Nakamura T, Yu HC, Kimura W, Murakami G, Cho BH: Fetal anatomy of peripheral lymphatic vessels: a D2-40 immunohistochemical study using an 18-week human fetus (CRL 155 mm). J Anat 2010, 216:671-682.
  • [38]Jeong YJ, Cho BH, Kinugasa Y, Song CH, Hirai I, Kimura W, Fujimiya M, Murakami G: Fetal topohistology of the mesocolon transversum with special reference to fusion with other mesenteries and fasciae. Clin Anat 2009, 22:716-729.
  • [39]Pusztaszeri MP, Seelentag W, Bosman FT: Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 2006, 54:385-395.
  • [40]ten Dijke P, Goumans MJ, Pardali E: Endoglin in angiogenesis and vascular diseases. Angiogenesis 2008, 11:79-89.
  • [41]Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, Boak BB, Wendel DP: Defective angiogenesis in mice lacking endoglin. Science 1999, 284:1534-1537.
  • [42]Folkman J, D’Amore PA: Blood vessel formation: what is its molecular basis? Cell 1996, 87:1153-1155.
  • [43]Wu J, Bohanan CS, Neumann JC, Lingrel JB: KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 2008, 283:3942-3950.
  • [44]Attout T, Hoerauf A, Denece G, Debrah AY, Marfo-Debrekyei Y, Boussinesq M, Wanji S, Martinez V, Mand S, Adjei O, Bain O, Specht S, Martin C: Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human onchocerca nodule. PLoS One 2009, 4:e8234.
  • [45]Harvey NL, Gordon EJ: Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vasc Cell 2012, 4:15. BioMed Central Full Text
  • [46]Schroedl F, Brehmer A, Neuhuber WL, Kruse FE, May CA, Cursiefen C: The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci 2008, 49:5222-5229.
  • [47]Paupert J, Sounni NE, Noel A: Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol Aspects Med 2011, 32:146-158.
  • [48]Maby-El Hajjami H, Petrova TV: Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 2008, 130:1063-1078.
  • [49]Tammela T, Alitalo K: Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010, 140:460-476.
  • [50]Sauter B, Foedinger D, Sterniczky B, Wolff K, Rappersberger K: Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 1998, 46:165-176.
  • [51]Lutter S, Xie S, Tatin F, Makinen T: Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol 2012, 197:837-849.
  • [52]Norrmen C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M, Miura N, Puolakkainen P, Horsley V, Hu J, Augustin HG, Ylä-Herttuala S, Alitalo K, Petrova TV: FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009, 185:439-457.
  • [53]Rubbia-Brandt L, Terris B, Giostra E, Dousset B, Morel P, Pepper MS: Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 2004, 10:6919-6928.
  • [54]Ashworth MA, Leach FN, Milner RD: Development of insulin secretion in the human fetus. Arch Dis Child 1973, 48:151-152.
  • [55]Hoffman L, Mandel TE, Carter WM, Koulmanda M, Martin FI: Insulin secretion by fetal human pancreas in organ culture. Diabetologia 1982, 23:426-430.
  • [56]Milner RD, Ashworth MA, Barson AJ: Insulin release from human foetal pancreas in response to glucose, leucine and arginine. J Endocrinol 1972, 52:497-505.
  • [57]Otonkoski T, Andersson S, Knip M, Simell O: Maturation of insulin response to glucose during human fetal and neonatal development. Studies with perifusion of pancreatic isletlike cell clusters. Diabetes 1988, 37:286-291.
  • [58]Makinen T, Norrmen C, Petrova TV: Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 2007, 64:1915-1929.
  • [59]Buttler K, Ezaki T, Wilting J: Proliferating mesodermal cells in murine embryos exhibiting macrophage and lymphendothelial characteristics. BMC Dev Biol 2008, 8:43. BioMed Central Full Text
  • [60]Buttler K, Kreysing A, von Kaisenberg CS, Schweigerer L, Gale N, Papoutsi M, Wilting J: Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn 2006, 235:1554-1562.
  文献评价指标  
  下载次数:47次 浏览次数:9次