期刊论文详细信息
Particle and Fibre Toxicology
Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission
Simon I Hay3  Peter W Gething1  David L Smith2  Thomas W Scott3  Robert C Reiner Jr3  Jane P Messina1  Moritz U G Kraemer1  David M Pigott1  Nick Golding1  Oliver J Brady1 
[1] Spatial Ecology and Epidemiology Group, Tinbergen Building, Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom;Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA;Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
关键词: Map;    Disease model;    Competence;    Suitability;    Distribution;    Temperature;    Albopictus;    Aegypti;    Aedes;   
Others  :  1183542
DOI  :  10.1186/1756-3305-7-338
 received in 2014-05-02, accepted in 2014-06-27,  发布年份 2014
PDF
【 摘 要 】

Background

Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations.

Methods

Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission.

Results

Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti.

Conclusions

These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation.

【 授权许可】

   
2014 Brady et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150520080110353.pdf 3701KB PDF download
Figure 5. 94KB Image download
Figure 4. 197KB Image download
Figure 3. 193KB Image download
Figure 2. 70KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI: The global distribution and burden of dengue. Nature 2013, 496(7446):504.
  • [2]Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI: Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 2012, 6(8):e1760.
  • [3]Messina JP, Brady OJ, Pigott DM, Brownstein JS, Hoen AG, Hay SI: A global compendium of human dengue virus occurrence. Sci Data 2014., 1(140004) doi:10.1038/sdata.2014.1034
  • [4]Gubler DJ, Clark GG: Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1995, 1(2):55-57.
  • [5]Holmes EC, Twiddy SS: The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 2003, 3(1):19-28.
  • [6]Cuong HQ, Hien NT, Duong TN, Phong TV, Cam NN, Farrar J, Nam VS, Thai KT, Horby P: Quantifying the emergence of dengue in Hanoi, Vietnam: 1998-2009. PLoS Negl Trop Dis 2011, 5(9):e1322.
  • [7]Radke EG, Gregory CJ, Kintziger KW, Sauber-Schatz EK, Hunsperger EA, Gallagher GR, Barber JM, Biggerstaff BJ, Stanek DR, Tomashek KM, Blackmore CG: Dengue outbreak in Key West, Florida, USA, 2009. Emerg Infect Dis 2012, 18(1):135-137.
  • [8]Christophers R: Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure. 1st edition. Cambridge: Cambridge University Press; 1960.
  • [9]Focks DA, Haile DG, Daniels E, Mount GA: Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 1993, 30(6):1003-1017.
  • [10]Brady OJ, Johansson MA, Guerra CA, Bhatt S, Golding N, Pigott DM, Smith DL, Scott TW, Gething PW, Hay SI: Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit Vectors 2013, 6:351.
  • [11]Chan M, Johansson MA: The incubation periods of dengue viruses. PLoS One 2012, 7(11):e50972.
  • [12]WorldClim global climate data, Data for current conditions http://www.worldclim.org/current webcite
  • [13]Nasci R: The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J Am Mosq Control Assoc 1986, 2(1):61-62.
  • [14]Gratz N: Critical review of the vector status of Aedes albopictus. Med Vet Entomol 2004, 18(3):215-227.
  • [15]Lambrechts L, Scott TW, Gubler DJ: Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 2010, 4(5):e646.
  • [16]Carbajo A, Curto S, Schweigmann N: Spatial distribution pattern of oviposition in the mosquito Aedes aegypti in relation to urbanization in Buenos Aires: southern fringe bionomics of an introduced vector. Med Vet Entomol 2006, 20(2):209-218.
  • [17]Benedict MQ, Levine RS, Hawley WA, Lounibos LP: Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonot Dis 2007, 7(1):76-85.
  • [18]Reiter P: Aedes albopictus and the world trade in used tires, 1988-1995: the shape of things to come? J Am Mosq Control Assoc 1998, 14(1):83-94.
  • [19]La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, Lenglet A, Jourdain F, Leparc-Goffart I, Charlet F: First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 2010, 15(39):19676.
  • [20]Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, Elm J, Tom T, Reiter P, Rigau-Perez JG, Hayes JM, Mills K, Napier M, Clark GG, Gubler DJ, Hawaii Dengue Outbreak Investigation Team: Dengue fever, Hawaii, 2001-2002. Emerg Infect Dis 2005, 11(5):742-749.
  • [21]ECDC: Rapid risk assessment on dengue cases in Madeira. European Centre for Disease Prevention and Control 2012. Available at: http://www.ecdc.europa.eu/en/press/news/_layouts/forms/News_DispForm.aspx?ID=568&List=8db7286c-fe2d-476c-9133-18ff4cb1b568 webcite
  • [22]Franco L, Di Caro A, Carletti F, Vapalahti O, Renaudat C, Zeller H, Tenorio A: Recent expansion of dengue virus serotype 3 in West Africa. Euro Surveill 2010, 15(7):578-583.
  • [23]Valerio L, Marini F, Bongiorno G, Facchinelli L, Pombi M, Caputo B, Maroli M, della Torre A: Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome Province, Italy. Vector Borne Zoonot Dis 2010, 10(3):291-294.
  • [24]Estrada-Franco JG, Craig GB: Biology, Disease Relationships, and Control of Aedes albopictus. Washington DC: Pan American Health Organization; 1995.
  • [25]Ho B, Chan K, Chan Y: Aedes aegypti (L.) and Aedes albopictus (Skuse) in Singapore City: 3. Population fluctuations. Bull World Health Organ 1971, 44(5):635.
  • [26]Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M: Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban-rural gradient and the relating environmental factors examined in three villages in northern Thailand. J Am Mosq Control Assoc 2006, 22(2):222-228.
  • [27]Johansson MA, Cummings DA, Glass GE: Multiyear climate variability and dengue—El Nino southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 2009, 6(11):e1000168.
  • [28]Simoes TC, Codeço CT, Nobre AA, Eiras ÁE: Modeling the non-stationary climate dependent temporal dynamics of Aedes aegypti. PLoS One 2013, 8(8):e64773.
  • [29]Campbell KM, Lin C, Iamsirithaworn S, Scott TW: The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg 2013, 89(6):1066.
  • [30]Nawrocki S, Hawley W: Estimation of the northern limits of distribution of Aedes albopictus in North America. J Am Mosq Control Assoc 1987, 3(2):314-317.
  • [31]Kobayashi M, Nihei N, Kurihara T: Analysis of northern distribution of Aedes albopictus (Diptera: Culicidae) in Japan by geographical information system. J Med Entomol 2002, 39(1):4-11.
  • [32]Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 2011, 108(18):7460-7465.
  • [33]Yang H, Macoris M, Galvani K, Andrighetti M, Wanderley D: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 2009, 137(8):1188.
  • [34]Focks DA, Daniels E, Haile DG, Keesling JE: A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 1995, 53(5):489-506.
  • [35]Gething PW, Van Boeckel TP, Smith DL, Guerra CA, Patil AP, Snow RW, Hay SI: Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasit Vectors 2011, 4:92.
  • [36]Weiss DJ, Bhatt S, Mappin B, Van Boeckel TP, Smith DL, Hay SI, Gething PW: Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction. Malar J 2014, 13(1):1-11.
  • [37]Macdonald G: Epidemiological basis of malaria control. Bull World Health Organ 1956, 15(3–5):613.
  • [38]Reiner RC, Perkins TA, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JR, Bisanzio D, Buckee C, Chiyaka C, Cummings DA, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lindsay SW, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh BK, Tatem AJ, Kitron U, Hay SI, Scott TW, et al.: A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J Royal Soc Interface 2013, 10(81):20120921.
  • [39]Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE: Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog 2012, 8(4):e1002588.
  • [40]Smith DL, Perkins TA, Reiner RC Jr, Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JR, Bisanzio D, Buckee C, Chiyaka C, Cummings DA, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lindsay SW, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh B, Stoller J, Tatem AJ, Kitron U, et al.: Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg 2014, 108(4):185-197.
  • [41]Smith DL, McKenzie FE: Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 2004, 3:13.
  • [42]Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuk B, Klungthong C, Richardson JH, Ponlawat A, Jarman RG, Scott TW: Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 2012, 86(3):1853-1861.
  • [43]Lunn DJ, Thomas A, Best N, Spiegelhalter D: WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 2000, 10(4):325-337.
  • [44]Byrd RH, Lu P, Nocedal J, Zhu C: A limited memory algorithm for bound constrained optimization. Siam J Sci Comput 1995, 16(5):1190-1208.
  • [45]Parton WJ, Logan JA: A model for diurnal variation in soil and air temperature. Agr Met 1981, 23:205-216.
  • [46]Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW: Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One 2013, 8(3):e58824.
  • [47]Carrington LB, Armijos MV, Lambrechts L, Scott TW: Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis 2013, 7(4):e2190.
  • [48]Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW: Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg 2013, 88(4):689-697.
  • [49]Carrington LB, Seifert SN, Willits NH, Lambrechts L, Scott TW: Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J Med Entomol 2013, 50(1):43-51.
  • [50]Costero A, Edman JD, Clark GG, Kittayapong P, Scott TW: Survival of starved Aedes aegypti (Diptera: Culicidae) in Puerto Rico and Thailand. J Med Entomol 1999, 36(3):272-276.
  • [51]Guerra CA, Reiner RC, Perkins AT, Lindsay SW, Midega J, Brady OJ, Barker CM, Reisen WK, Harrington LC, Takken W, Kitron U, Lloyd AL, Hay SI, Scott TW, Smith DL: A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-borne pathogens. Parasit Vectors 2014, 7(1):276. doi:10.1186/1756-3305-7-276.
  • [52]Canyon D, Hii J, Müller R: Adaptation of Aedes aegypti (Diptera: Culicidae) oviposition behavior in response to humidity and diet. J Insect Physiol 1999, 45(10):959-964.
  • [53]Hanson S, Craig G: Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). J Med Entomol 1994, 31(2):192-201.
  • [54]Model of adult Aedes albopictus survival/mortality at different temperatures http://figshare.com/articles/Model_of_adult_Aedes_albopictus_survival_mortality_at_different_temperatures/865035 webcite
  • [55]Model of adult Aedes aegypti survival/mortality at different temperatures http://figshare.com/articles/Model_of_adult_Aedes_aegypti_survival_mortality_at_different_temperatures/865034 webcite
  • [56]Vairo F, Nicastri E, Meschi S, Schepisi MS, Paglia MG, Bevilacqua N, Mangi S, Sciarrone MR, Chiappini R, Mohamed J, Racalbuto V, Di Caro A, Capobianchi MR, Ippolito G: Seroprevalence of dengue infection: a cross-sectional survey in mainland Tanzania and on Pemba Island, Zanzibar. Int J Infect Dis 2011, 16(1):1-2.
  • [57]Nguyen NM, Kien DTH, Tuan TV, Quyen NTH, Tran CN, Thi LV, Le Thi D, Nguyen HL, Farrar JJ, Holmes EC: Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 2013, 110(22):9072-9077.
  • [58]Chen WJ, Wei HL, Hsu EL, Chen ER: Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: development of the virus in orally and parenterally infected mosquitoes. J Med Entomol 1993, 30(3):524-530.
  • [59]Xi Z, Ramirez JL, Dimopoulos G: The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 2008, 4(7):e1000098.
  • [60]Ramirez JL, Souza-Neto J, Cosme RT, Rovira J, Ortiz A, Pascale JM, Dimopoulos G: Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 2012, 6(3):e1561.
  • [61]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 2009, 139(7):1268-1278.
  • [62]Mogi M, Khamboonruang C, Choochote W, Suwanpanti P: Ovitrap surveys of dengue vector mosquitoes in Chiang Mai, northern Thailand: seasonal shifts in relative abundance of Aedes albopictus and Ae. aegypti. Med Vet Entomol 1988, 2(4):319-324.
  • [63]Yap H: Distribution of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in small towns and villages of Penang Island, Malaysia–an ovitrap survey. Southeast Asian J Trop Med Public Health 1975, 6(4):519-524.
  • [64]Braks MA, Honório NA, Lourenço-De-Oliveira R, Juliano SA, Lounibos LP: Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol 2003, 40(6):785-794.
  • [65]Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW: Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 2009, 9(1):160.
  • [66]Lambrechts L, Quillery E, Noël V, Richardson JH, Jarman RG, Scott TW, Chevillon C: Specificity of resistance to dengue virus isolates is associated with genotypes of the mosquito antiviral gene Dicer-2. Proc R Soc B 2013, 280(1751):20122437.
  • [67]Fansiri T, Fontaine A, Diancourt L, Caro V, Thaisomboonsuk B, Richardson JH, Jarman RG, Ponlawat A, Lambrechts L: Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses. PLoS Genet 2013, 9(8):e1003621.
  • [68]Scott TW, Clark GG, Amerasinghe PH, Lorenz LH, Reiter P, Edman JD: Detection of multiple blood feeding patterns in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histological technique. J Med Entomol 1993, 30:94-99.
  • [69]Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD: Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 2000, 37(1):89-101.
  • [70]Delatte H, Desvars A, Bouétard A, Bord S, Gimonneau G, Vourc'h G, Fontenille D: Blood-feeding behavior of Aedes albopictus, a vector of Chikungunya on La Réunion. Vector Borne Zoonot Dis 2010, 10(3):249-258.
  • [71]Ponlawat A, Harrington LC: Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 2005, 42(5):844-849.
  • [72]Richards SL, Ponnusamy L, Unnasch TR, Hassan HK, Apperson CS: Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in relation to availability of human and domestic animals in suburban landscapes of central North Carolina. J Med Entomol 2006, 43(3):543.
  • [73]Romi R, Severini F, Toma L: Cold acclimation and overwintering of female Aedes albopictus in Roma. J Am Mosq Control Assoc 2006, 22(1):149-151.
  • [74]Hawley W, Pumpuni C, Brady R, Craig G: Overwintering survival of Aedes albopictus (Diptera: Culicidae) eggs in Indiana. J Med Entomol 1989, 26(2):122-129.
  • [75]Bennett KE, Olson KE, Munoz Mde L, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC, Beaty BJ: Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 2002, 67(1):85-92.
  • [76]Boromisa RD, Rai KS, Grimstad PR: Variation in the vector competence of geographic strains of Aedes albopictus for dengue 1 virus. J Am Mosq Control Assoc 1987, 3(3):378-386.
  • [77]Failloux A, Vazeille-Falcoz M, Mousson L, Rodhain F: Genetic control of vectorial competence in Aedes mosquitoes. Bull Soc Pathol Exot Filiales 1998, 92(4):266-273.
  • [78]Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW: Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 2005, 72(4):434-442.
  • [79]Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ: Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc R Soc B 2011, 278(1717):2446-2454.
  • [80]Lozano-Fuentes S, Fernandez-Salas I, de Lourdes MM, Garcia-Rejon J, Olson KE, Beaty BJ, Black WC IV: The neovolcanic axis is a barrier to gene flow among Aedes aegypti populations in mexico that differ in vector competence for dengue 2 virus. PLoS Negl Trop Dis 2009, 3(6):e468.
  • [81]Jarman RG, Holmes EC, Rodpradit P, Klungthong C, Gibbons RV, Nisalak A, Rothman AL, Libraty DH, Ennis FA, Mammen MP: Microevolution of Dengue viruses circulating among primary school children in Kamphaeng Phet. Thailand J Virol 2008, 82(11):5494-5500.
  • [82]Rabaa MA, Ty Hang VT, Wills B, Farrar J, Simmons CP, Holmes EC: Phylogeography of recently emerged DENV-2 in southern Viet Nam. PLoS Negl Trop Dis 2010, 4(7):e766.
  • [83]Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE: Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 2014, 22(3):138-146.
  • [84]Tatem AJ, Hay SI, Rogers DJ: Global traffic and disease vector dispersal. Proc Natl Acad Sci U S A 2006, 103(16):6242-6247.
  • [85]Hales S, de Wet N, Maindonald J, Woodward A: Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 2002, 360(9336):830-834.
  • [86]Patz JA, Martens WJ, Focks DA, Jetten TH: Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 1998, 106(3):147-153.
  • [87]Jetten TH, Focks DA: Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 1997, 57(3):285-297.
  • [88]Rogers DJ, Wilson AJ, Hay SI, Graham AJ: The global distribution of yellow fever and dengue. Adv Parasitol 2006, 62:181-220.
  • [89]European Centre for Disease Prevention and Control: The climatic suitability for dengue transmission in continental Europe. Stockholm: ECDC; 2012.
  • [90]Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C: Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Global Planet Change 2011, 78(1):54-64.
  • [91]Caminade C, Medlock JM, Ducheyne E, McIntyre KM, Leach S, Baylis M, Morse AP: Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J Royal Soc Interface 2012, 9(75):2708-2717.
  • [92]Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI: A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 2011, 10:378.
  文献评价指标  
  下载次数:12次 浏览次数:33次