期刊论文详细信息
Orphanet Journal of Rare Diseases
Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database
Elisabeth Le Rumeur2  Frédérique Barloy-Hubler1  France Leturcq4  Jamel Chelly4  Jean-Claude Kaplan4  Rabah Ben Yaou3  Céline Lucchetti-Miganeh2  Aurélie Nicolas5 
[1] IFR 140 Biosit, Plate-forme Amadeus, Université de Rennes1, Rennes, France;UMR CNRS 6026, Equipe SP@RTE, Campus Beaulieu, Rennes cedex, 35042, France;Laboratoire de Biochimie et Génétique Moléculaire–Hôpital Cochin,, Paris, France;Faculté de Médecine Paris Descartes, CHU Cochin, Paris, France;Université Européenne de Bretagn, 5, Boulevard Laënnec, Rennes, 35000, France
关键词: Phenotype-genotype correlation;    Becker muscular dystrophy;    Duchenne muscular dystrophy;    Spectrin-like repeats;    DMD gene mutations;    Dystrophin;   
Others  :  864309
DOI  :  10.1186/1750-1172-7-45
 received in 2012-04-11, accepted in 2012-06-18,  发布年份 2012
PDF
【 摘 要 】

Background

Dystrophin is a large essential protein of skeletal and heart muscle. It is a filamentous scaffolding protein with numerous binding domains. Mutations in the DMD gene, which encodes dystrophin, mostly result in the deletion of one or several exons and cause Duchenne (DMD) and Becker (BMD) muscular dystrophies. The most common DMD mutations are frameshift mutations resulting in an absence of dystrophin from tissues. In-frame DMD mutations are less frequent and result in a protein with partial wild-type dystrophin function. The aim of this study was to highlight structural and functional modifications of dystrophin caused by in-frame mutations.

Methods and results

We developed a dedicated database for dystrophin, the eDystrophin database. It contains 209 different non frame-shifting mutations found in 945 patients from a French cohort and previous studies. Bioinformatics tools provide models of the three-dimensional structure of the protein at deletion sites, making it possible to determine whether the mutated protein retains the typical filamentous structure of dystrophin. An analysis of the structure of mutated dystrophin molecules showed that hybrid repeats were reconstituted at the deletion site in some cases. These hybrid repeats harbored the typical triple coiled-coil structure of native repeats, which may be correlated with better function in muscle cells.

Conclusion

This new database focuses on the dystrophin protein and its modification due to in-frame deletions in BMD patients. The observation of hybrid repeat reconstitution in some cases provides insight into phenotype-genotype correlations in dystrophin diseases and possible strategies for gene therapy. The eDystrophin database is freely available: http://edystrophin.genouest.org/ webcite.

【 授权许可】

   
2012 Nicolas et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725091945424.pdf 1534KB PDF download
68KB Image download
61KB Image download
157KB Image download
138KB Image download
116KB Image download
74KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mendelian Inheritance in Man,. [http://www.ncbi.nlm.gov/omim] webcite
  • [2]Hoffman EP, Brown RH, Kunkel LM: Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987, 51:919-928.
  • [3]Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM: Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987, 50:509-517.
  • [4]Roberts RG, Bobrow M: Dystrophins in vertebrates and invertebrates. Hum Mol Genet 1998, 7:589-595.
  • [5]Segalat L: Dystrophin and functionally related proteins in the nematode Caenorhabditis elegans. Neuromuscul Disord 2002, 12(Suppl 1):S105-S109.
  • [6]Koenig M, Monaco AP, Kunkel LM: The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988, 53:219-226.
  • [7]Winder SJ, Gibson TJ, Kendrick-Jones J: Dystrophin and utrophin: the missing links! FeBS lett 1995, 369:27-33.
  • [8]Le Rumeur E, Winder SJ, Hubert JF: Dystrophin: More than just the sum of its parts. Biochim Biophys Acta 2010, 1804:1713-1722.
  • [9]Blake DJ, Weir A, Newey SE, Davies KE: Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002, 82:291-329.
  • [10]Campbell K, Kahl S: Association of dystrophin and an integral membrane glycoprotein. Nature 1989, 338:259-262.
  • [11]Chamberlain JS, Corrado K, Rafael JA, Cox GA, Hausser M, Lumeng C: Interactions between dystrophin and the sarcolemma membrane. Soc Gen Physiol Ser 1997, 52:19-29.
  • [12]Petrof BJ, Shrager JB, Stedmann HH, Kelly AM, Sweeney HL: Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci, USA 1993, 90:3710-3714.
  • [13]Deconinck N, Dan B: Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 2007, 36:1-7.
  • [14]Batchelor CL, Winder SJ: Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy. Trends Cell Biol 2006, 16:198-205.
  • [15]Desguerre I, Christov C, Mayer M, Zeller R, Becane HM, Bastuji-Garin S, Leturcq F, Chiron C, Chelly J, Gherardi RK: Clinical heterogeneity of duchenne muscular dystrophy (DMD): definition of sub-phenotypes and predictive criteria by long-term follow-up. PLoS One 2009, 4:e4347.
  • [16]Koenig M, Beggs A, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Muller C, Lindlof M, Kaariainen H: The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989, 45:498-506.
  • [17]Magri F, Govoni A, D'Angelo MG, Del Bo R, Ghezzi S, Sandra G, Turconi AC, Sciacco M, Ciscato P, Bordoni A, et al.: Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J Neurol 2011, 258:1610-1623.
  • [18]Beggs A, Hoffman E, Snyder J, Arahata K, Specht L, Shapiro F, Angelini C, Sugita H, Kunkel L: Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet 1991, 49:54-67.
  • [19]Bushby KM, Gardner-Medwin D, Nicholson LV, Johnson MA, Haggerty ID, Cleghorn NJ, Harris JB, Bhattacharya SS: The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy. II. Correlation of phenotype with genetic and protein abnormalities. J Neurol 1993, 240:105-112.
  • [20]Comi GP, Prelle A, Bresolin N, Moggio M, Bardoni A, Gallanti A, Vita G, Toscano A, Ferro MT, Bordoni A, et al.: Clinical variability in Becker muscular dystrophy. Genetic, biochemical and immunohistochemical correlates. Brain 1994, 117(Pt 1):1-14.
  • [21]Nigro V, Nigro G, Esposito MG, Comi LI, Molinari AM, Puca GA, Politano L: Novel small mutations along the DMD/BMD gene associated with different phenotypes. Hum Mol Genet 1994, 3:1907-1908.
  • [22]Morandi L, Mora M, Confalonieri V, Barresi R, Di Blasi C, Brugnoni R, Bernasconi P, Mantegazza R, Dworzak F, Antozzi C, et al.: Dystrophin characterization in BMD patients: correlation of abnormal protein with clinical phenotype. J Neurol Sci 1995, 132:146-155.
  • [23]Beroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, Moizard MP, Voelckel MA, Calemard LM, Boisseau P, et al.: Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63 % of patients with Duchenne muscular dystrophy. Hum Mutat 2007, 28:196-202.
  • [24]Kaspar RW, Allen HD, Ray WC, Alvarez CE, Kissel JT, Pestronk A, Weiss RB, Flanigan KM, Mendell JR, Montanaro F: Analysis of dystrophin deletion mutations predicts age of cardiomyopathy onset in becker muscular dystrophy. Circ Cardiovasc Genet 2009, 2:544-551.
  • [25]Cunniff C, Andrews J, Meaney FJ, Mathews KD, Matthews D, Ciafaloni E, Miller TM, Bodensteiner JB, Miller LA, James KA, et al.: Mutation analysis in a population-based cohort of boys with Duchenne or Becker muscular dystrophy. J Child Neurol 2009, 24:425-430.
  • [26]Monaco A, Bertelson C, Liechti-Gallati S, Moser H, Kunkel L: An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988, 2:90-95.
  • [27]Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT: Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 2006, 34:135-144.
  • [28]Winnard AV, Klein CJ, Coovert DD, Prior T, Papp A, Snyder P, Bulman DE, Ray PN, McAndrew P, King W, et al.: Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Hum Mol Genet 1993, 2:737-744.
  • [29]Hattori N, Kaido M, Nishigaki T, Inui K, Fujimura H, Nishimura T, Naka T, Hazama T: Undetectable dystrophin can still result in a relatively benign phenotype of dystrophinopathy. Neuromuscul Disord 1999, 9:220-226.
  • [30]Tuffery-Giraud S, Saquet C, Thorel D, Disset A, Rivier F, Malcolm S, Claustres M: Mutation spectrum leading to an attenuated phenotype in dystrophinopathies. Eur J Hum Genet 2005, 13:1254-1260.
  • [31]Gualandi F, Neri M, Bovolenta M, Martoni E, Rimessi P, Fini S, Spitali P, Fabris M, Pane M, Angelini C, et al.: Transcriptional behavior of DMD gene duplications in DMD/BMD males. Hum Mutat 2009, 30:E310-E319.
  • [32]Anthony K, Cirak S, Torelli S, Tasca G, Feng L, Arechavala-Gomeza V, Armaroli A, Guglieri M, Straathof CS, Verschuuren JJ, et al.: Dystrophin quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials. Brain 2011, 134:3544-3556.
  • [33]van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, et al.: Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007, 357:2677-2686.
  • [34]Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, et al.: Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009, 8:918-928.
  • [35]Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ, et al.: Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011, 378:595-605.
  • [36]Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA, et al.: Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 2011, 364:1513-1522.
  • [37]Leiden Muscular Dystrophy pages,. http://www.dmd.nl/nmdb/home.php?select_db=DMD webcite
  • [38]White SJ, den Dunnen JT: Copy number variation in the genome; the human DMD gene as an example. Cytogenet Genome Res 2006, 115:240-246.
  • [39]UMD-DMD France,. http://www.umd.be/DMD/W_DMD/index.html webcite
  • [40]Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, Moizard MP, Bernard R, Cossee M, Boisseau P, et al.: Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 2009, 30:934-945.
  • [41]Campbell KP: Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 1995, 80:675-679.
  • [42]MAMP,. http://www.mamp.info/en/index.html webcite
  • [43]BioGenouest Platform,. http://www.genouest.org webcite
  • [44]MyDomains,. http://prosite.expasy.org/mydomains/ webcite
  • [45]Jmol,. http://www.jmol.org/url webcite
  • [46]Chelly J, Hamard G, Koulakoff A, Kaplan JC, Kahn A, Berwald-Netter Y: Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature 1990, 344:64-65.
  • [47]D’Souza VN, Nguyen TM, Morris GE, Karges W, Pillers DA, Ray PN: A novel dystrophin isoform is required for normal retinal electrophysiology. Hum Mol Genet 1995, 4:837-842.
  • [48]Lidov HG, Selig S, Kunkel LM: Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Hum Mol Genet , 4:329-335.
  • [49]Byers TJ, Lidov HG, Kunkel LM: An alternative dystrophin transcript specific to peripheral nerve. Nat Genet , 4:77-81.
  • [50]Hugnot JP, Gilgenkrantz H, Vincent N, Chafey P, Morris GE, Monaco AP, Berwald-Netter Y, Koulakoff A, Kaplan JC, Kahn A, et al.: Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75-kDa protein widely distributed in nonmuscle tissues. Proc Natl Acad Sci U S A , 89:7506-7510.
  • [51]Norwood F, Sutherland-Smith A, Keep N, Kendrick-Jones J: The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 2000, 8:481-491.
  • [52]Huang X, Poy F, Zhang R, Joachimiak A, Sudol M, Eck MJ: Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat Struct Biol 2000, 7:634-638.
  • [53]Legrand B, Giudice E, Nicolas A, Delalande O, LeRumeur E: Computational study of the human dystrophin repeats: interaction properties and molecular dynamics. PLoS One 2011, 6:e23819.
  • [54]Human Genome Variation Society,. http://www.hgvs.org/ webcite
  • [55]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5:725-738.
  • [56]Zhang Y: I-TASSER server for protein 3D structure prediction. BMC Bioinforma 2008, 9:40. BioMed Central Full Text
  • [57]DeLano WL: (Ed): The PyMOL user’s manual. DeLano Scientific, San Carlos, CA; 2002.
  • [58]Sippl MJ: Recognition of errors in three-dimensional structures of proteins. Proteins 1993, 17:355-362.
  • [59]Wiederstein M, Sippl MJ: ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007, 35:W407-W410.
  • [60]Bowie JU, Luthy R, Eisenberg D: A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991, 253:164-170.
  • [61]Luthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature 1992, 356:83-85.
  • [62]Menhart N: Hybrid spectrin type repeats produced by exon-skipping in dystrophin. Biochim Biophys Acta 2006, 1764:993-999.
  • [63]Yokota T, Duddy W, Patridge T: Optimizing exon skipping therapies for DMD. Acta Myologica 2007, 26:179-184.
  • [64]Lupas A: Coiled coils: new structures and new functions. Trends Biochem Sci 1996, 21:375-382.
  • [65]Parry DAD, Fraser RDB, John M, Squire JM: Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure. J Struct Biol 2008, 163:258-269.
  • [66]Leiden Open Variation Database,. http://www.lovd.nl/2.0/ webcite
  • [67]Fokkema IF, den Dunnen JT, Taschner PE: LOVD: easy creation of a locus-specific sequence variation database using an “LSDB-in-a-box” approach. Hum Mutat 2005, 26:63-68.
  • [68]UMD,. http://www.umd.be webcite
  • [69]Beroud C, Hamroun D, Collod-Beroud G, Boileau C, Soussi T, Claustres M: UMD (Universal Mutation Database): 2005 update. Hum Mutat 2005, 26:184-191.
  • [70]Bushby KM, Thambyayah M, Gardner-Medwin D: Prevalence and incidence of Becker muscular dystrophy. Lancet 1991, 337:1022-1024.
  • [71]Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, Harper HA, Robinson AS, Engelhardt JF, Brooks SV, Chamberlain JS: Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nature Med 2002, 8:253-261.
  • [72]Banuelos S, Saraste M, Djinovic Carugo K: Structural comparisons of calponin homology domains: implications for actin binding. Structure 1998, 6(11):1419-1431.
  • [73]Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, et al.: CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 2009, 37(Database issue):D205-D210.
  • [74]Letunic I, Doerks T, Bork P: SMART 6: recent updates and new developments. Nucleic Acids Res 2009, 37(Database issue):D229-D232.
  • [75]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, et al.: The Pfam protein families database. Nucleic Acids Res 2010, 38(Database issue):D211-D222.
  • [76]Koenig M, Kunkel LM: Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem 1990, 265(8):4560-4566.
  • [77]Ishikawa-Sakurai M, Yoshida M, Imamura M, Davies KE, Ozawa E: ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to beta-dystroglycan. Hum Mol Genet 2004, 13(7):693-702.
  • [78]Hnia K, Zouiten D, Cantel S, Chazalette D, Hugon G, Fehrentz JA, Masmoudi A, Diment A, Bramham J, Mornet D, Winder SJ: ZZ domain of dystrophin and utrophin: topology and mapping of a beta-dystroglycan interaction site. Biochem J 2007, 3(3)):667-677. 3
  • [79]Koenig M, Monaco AP, Kunkel LM: The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 1988, 53(2):219-228.
  • [80]Stone MR, O'Neill A, Catino D, Bloch RJ: Specific interaction of the actinbinding domain of dystrophin with intermediate filaments containing keratin 19. Mol biol cell 2005, 16(9):4280-4293.
  • [81]Legardinier S, Raguenes-Nicol C, Tascon C, Rocher C, Hardy S, Hubert JF, Le Rumeur E: Mapping of the lipid-binding and stability properties of the central rod domain of human dystrophin. J Mol Biol 2009, 389(3):546-558.
  • [82]Yamashita K, Suzuki A, Satoh Y, Ide M, Amano Y, Masuda-Hirata M, Hayashi YK, Hamada K, Ogata K, Ohno S: The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarityregulating kinase PAR-1b. Biochem Biophys Res Commun 2010, 391(1):812-817.
  • [83]Amann KJ, Renley BA, Ervasti JM: A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 1998, 273(43):28419-28423.
  • [84]Bhosle RC, Michele DE, Campbell KP, Li Z, Robson RM: Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem Biophys Res Commun 2006, 346(3):768-777.
  • [85]Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D: Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Investig 2009, 119(3):624-635.
  • [86]Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, Davies KE, Winder SJ, Wiche G: Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with betadystroglycan. J Cell Biol 2007, 176(7):965-977.
  • [87]Newey SE, Benson MA, Ponting CP, Davies KE, Blake DJ: Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr Biol 2000, 10(20):1295-1298.
  • [88]Sadoulet-Puccio HM, Rajala M, Kunkel LM: Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc Natl Acad Sci U S A 1997, 94(23):12413-12418.
  • [89]Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ: Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 2008, 283(13):8070-8074.
  • [90]Ayalon G, Davis JQ, Scotland PB, Bennett V: An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2008, 135(7):1189-1200.
  • [91]Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Gappmaier E, Howard MT, Sampson JB, Mendell JR, Wall C, King WM, et al.: Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 2009, 30(12):1657-1666.
  • [92]Taylor PJ, Maroulis S, Mullan GL, Pedersen RL, Baumli A, Elakis G, Piras S, Walsh C, Prosper-Gutierrez B, De La Puente-Alonso F, et al.: Measurement of the clinical utility of a combined mutation detection protocol in carriers of Duchenne and Becker muscular dystrophy. J Med Genet 2007, 44(6):368-372.
  • [93]Dent KM, Dunn DM, von Niederhausern AC, Aoyagi AT, Kerr L, Bromberg MB, Hart KJ, Tuohy T, White S, den Dunnen JT, et al.: Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A 2005, 134(3):295-298.
  • [94]Taylor PJ, Betts GA, Maroulis S, Gilissen C, Pedersen RL, Mowat DR, Johnston HM, Buckley MF: Dystrophin gene mutation location and the risk of cognitive impairment in Duchenne muscular dystrophy. PLoS One 2009, 5(1):8803.
  • [95]Nevo Y, Muntoni F, Sewry C, Legum C, Kutai M, Harel S, Dubowitz V: Large inframe deletions of the rod-shaped domain of the dystrophin gene resulting in severe phenotype. Isr Med Assoc J 2003, 5(2):94-97.
  • [96]Carsana A, Frisso G, Tremolaterra MR, Lanzillo R, Vitale DF, Santoro L, Salvatore F: Analysis of dystrophin gene deletions indicates that the hinge III region of the protein correlates with disease severity. Ann Hum Genet 2005, 69(Pt 3):253-259.
  • [97]Tsukamoto H, Inui K, Fukushima H, Nishigaki T, Taniike M, Tanaka J, Okada S: Molecular study of Duchenne and Becker muscular dystrophies in Japanese. J Inherit Metab Dis 1991, 14(5):819-824.
  • [98]Janssen B, Hartmann C, Scholz V, Jauch A, Zschocke J: MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics 2005, 6(1):29-35.
  • [99]Buzin CH, Feng J, Yan J, Scaringe W, Liu Q, den Dunnen J, Mendell JR, Sommer SS: Mutation rates in the dystrophin gene: a hotspot of mutation at a CpG dinucleotide. Hum Mutat 2005, 25(2):177-188.
  • [100]Ramelli GP, Joncourt F, Luetschg J, Weis J, Tolnay M, Burgunder JM: Becker muscular dystrophy with marked divergence between clinical and molecular genetic findings: case series. Swiss Med Wkly 2006, 136(11–12):189-193.
  • [101]Fajkusova L, Lukas Z, Tvrdikova M, Kuhrova V, Hajek J, Fajkus J: Novel dystrophin mutations revealed by analysis of dystrophin mRNA: alternative splicing suppresses the phenotypic effect of a nonsense mutation. Neuromuscul Disord 2001, 11(2):133-138.
  • [102]Prior TW, Bridgeman SJ: Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J Mol Diagn 2005, 7(3):317-326.
  文献评价指标  
  下载次数:15次 浏览次数:3次