期刊论文详细信息
Source Code for Biology and Medicine
Robust dose-response curve estimation applied to high content screening data analysis
Michael Adsetts Edberg Hansen3  Myungjoo Kang5  Yong-Jun Kwon1  Jin Yeop Kim2  Yury Tsoy2  Kyungmin Song5  Thuy Tuong Nguyen4 
[1] Samsung Medical Center, Seoul, South Korea;Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea;Videometer A/S, Horsholm, Denmark;University of California, Davis, USA;Seoul National University, Seoul, South Korea
关键词: Outlier detection;    Weighting function;    Sigmoidal function;    Curve fitting;    Dose response curve;    High content screening;   
Others  :  1139268
DOI  :  10.1186/s13029-014-0027-x
 received in 2014-07-14, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background and method

Successfully automated sigmoidal curve fitting is highly challenging when applied to large data sets. In this paper, we describe a robust algorithm for fitting sigmoid dose-response curves by estimating four parameters (floor, window, shift, and slope), together with the detection of outliers. We propose two improvements over current methods for curve fitting. The first one is the detection of outliers which is performed during the initialization step with correspondent adjustments of the derivative and error estimation functions. The second aspect is the enhancement of the weighting quality of data points using mean calculation in Tukey’s biweight function.

Results and conclusion

Automatic curve fitting of 19,236 dose-response experiments shows that our proposed method outperforms the current fitting methods provided by MATLAB®;’s nlinfit nlinfit function and GraphPad’s Prism software.

【 授权许可】

   
2014 Nguyen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150321091510474.pdf 1690KB PDF download
Figure 6. 50KB Image download
Figure 5. 50KB Image download
Figure 4. 51KB Image download
Figure 3. 32KB Image download
Figure 2. 31KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Joseph MZ: Applications of high content screening in life science research. Comb Chem High Throughput Screen 2009, 12(9):870-876.
  • [2]Siqueira-Neto JL, Moon SH, Jang JY, Yang GS, Lee CB, Moon HK, Chatelain E, Genovesio A, Cechetto J, Freitas-Junior LH: An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLOS Neglect Trop D 2012, 6(6):e1671.
  • [3]Genovesio A, Kwon YJ, Windisch MP, Kim NY, Choi SY, Kim HC, Jung SY, Mammano F, Perrin V, Boese AS, Casartelli N, Schwartz O, Nehrbass U, Emans N: Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J Biomol Screen 2011, 16(9):945-958.
  • [4]Motulsky H, Christopoulos A: Fitting Models to Biological Data Using Linear and Nonlinear Regression: a Practical Guide to Curve Fitting . Oxford University Press Inc., New York, USA; 2004.
  • [5]Levenberg K: A method for the solution of certain problems in least squares. Quart Applied Math 1944, 2:164-168.
  • [6]Marquardt D: An algorithm for least-squares estimation of nonlinear parameters. SIAM J Applied Math 1963, 11(2):431-441.
  • [7]Ayiomamitis A: Logistic curve fitting and parameter estimation using nonlinear noniterative least-squares regression analysis. Comput Biomed Res 1986, 19(2):142-150.
  • [8]Rey D: Automatic best of fit estimation of dose response curve. Konferenz der SAS-Anwender in Forschung und Entwicklung 2007. [http://www.uni-ulm.de/ksfe2007]
  • [9]Wang Y, Jadhav A, Southal N, Huang R, Nguyen DT: A Grid algorithm for high throughput fitting of dose-response curve data. Curr Chem Genomics 2010, 4:57-66.
  • [10]Hoaglin D, Mosteller F, Tukey J: Understanding Robust and Exploratory Data Analysis . John Wiley and Sons Inc., New York, USA; 1983.
  • [11]Boyd Y, Vandenberghe L: Convex Optimization . Cambridge University Press, Cambridge; 2009.
  • [12]Ritz C, Streibig JC: Bioassay analysis using R. J Stat Soft 2005, 12(5):1-22.
  • [13]MathWorks Matlab 2013: nlinfit – Nonlinear regression[http://www.mathworks.com/help/stats/nlinfit.html]
  • [14]IDBS 2013: XLfit – for curve fitting and data analysis[http://www.excelcurvefitting.com]
  • [15]Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C: the Art of Scientific Computing (3rd edition) . Cambridge University Press, New York, USA; 2007.
  • [16]Holland PW, Welsch RE: Robust regression using iteratively reweighted least-squares. Comm Stat Theor Meth 1977, A6:813-827.
  • [17]Maronna R, Martin RD, Yohai V: Robust Statistics – Theory and Methods . Wiley, Chichester, England; 2006.
  文献评价指标  
  下载次数:70次 浏览次数:23次