期刊论文详细信息
Molecular Pain
Sodium channels and mammalian sensory mechanotransduction
John N Wood1  Fan Wang2  Mohammed A Nassar3  Edith Hummler5  Rachel Hatch4  Hannes Kiesewetter4  Francois Rugiero4  Ramin Raouf6 
[1] DMMBPS, Seoul National University, Seoul 151-742, Korea;Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;Biomedical Science University of Sheffield, Sheffield S10 2TN, UK;Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK;Department of Pharmacology and Toxicology, University of Lausanne, Lausanne 1005, Switzerland;Pfizer KCL Pain Lab, Wolfson Centre for Age-Related Diseases, King's College London, London, UK
关键词: ENaCs;    Nav1.8;    Nav1.7;    Pain;    Sodium channels;    Mechanotransduction;   
Others  :  865491
DOI  :  10.1186/1744-8069-8-21
 received in 2011-10-21, accepted in 2012-03-26,  发布年份 2012
PDF
【 摘 要 】

Background

Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear.

Results

Here we show that deleting β and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro.

Conclusion

Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.

【 授权许可】

   
2012 Raouf et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726080200793.pdf 940KB PDF download
36KB Image download
31KB Image download
37KB Image download
39KB Image download
27KB Image download
32KB Image download
【 图 表 】

【 参考文献 】
  • [1]Delmas P, Hao J, Rodat-Despoix L: Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011, 12:139-153.
  • [2]Di Castro A, Drew LJ, Wood JN, Cesare P: Modulation of sensory neuron mechanotransduction by PKC- and nerve growth factor-dependent pathways. Proc Natl Acad Sci USA 2006, 103:4699-4704.
  • [3]Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330:55-60.
  • [4]O'Hagan R, Chalfie M, Goodman MB: The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 2005, 8:43-50.
  • [5]Zhong L, Hwang RY, Tracey WD: Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Current biology: CB 2010, 20:429-434.
  • [6]Arnadottir J, O'Hagan R, Chen Y, Goodman MB, Chalfie M: The DEG/ENaC Protein MEC-10 regulates the transduction channel complex in caenorhabditis elegans touch receptor neurons. J Neurosci 2011, 31:12695-12704.
  • [7]Drew LJ, Rohrer DK, Price MP, Blaver KE, Cockayne DA, Cesare P, Wood JN: Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol 2004, 556:691-710.
  • [8]Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994, 367:463-467.
  • [9]Awayda MS, Ismailov II, Berdiev BK, Benos DJ: A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physiol 1995, 268:C1450-C1459.
  • [10]Carattino MD, Sheng S, Kleyman TR: Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 2004, 279:4120-4126.
  • [11]Althaus M, Bogdan R, Clauss WG, Fronius M: Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB J 2007, 21:2389-2399.
  • [12]Rusch A, Hummler E: Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel. Hear Res 1999, 131:170-176.
  • [13]Meltzer RH, Kapoor N, Qadri YJ, Anderson SJ, Fuller CM, Benos DJ: Heteromeric assembly of acid-sensitive ion channel and epithelial sodium channel subunits. J Biol Chem 2007, 282:25548-25559.
  • [14]Drummond HA, Abboud FM, Welsh MJ: Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 2000, 884:1-12.
  • [15]Fricke B, Lints R, Stewart G, Drummond H, Dodt G, Driscoll M, von During M: Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res 2000, 299:327-334.
  • [16]Simon A, Shenton F, Hunter I, Banks RW, Bewick GS: Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 2010, 588:171-185.
  • [17]Raouf R, Quick K, Wood JN: Pain as a channelopathy. J Clin Invest 2010, 120:3745-3752.
  • [18]Nassar MA, Levato A, Stirling LC, Wood JN: Neuropathic pain develops normally in mice lacking both Na(v)1.7 and Na(v)1.8. Mol Pain 2005, 1:24. BioMed Central Full Text
  • [19]Beyder A, Rae JL, Bernard C, Strege PR, Sachs F, Farrugia G: Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J Physiol 2010, 588:4969-4985.
  • [20]Morris CE, Juranka PF: Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J 2007, 93:822-833.
  • [21]Wang JA, Lin W, Morris T, Banderali U, Juranka PF, Morris CE: Membrane trauma and Na+ leak from Nav1.6 channels. Am J Physiol Cell Physiol 2009, 297:C823-C834.
  • [22]Lechner SG, Frenzel H, Wang R, Lewin GR: Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO J 2009, 28:1479-1491.
  • [23]Abrahamsen B, Zhao J, Asante CO, Cendan CM, Marsh S, Martinez-Barbera JP, Nassar MA, Dickenson AH, Wood JN: The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 2008, 321:702-705.
  • [24]Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN: Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci USA 2004, 101:12706-12711.
  • [25]Hu J, Lewin GR: Mechanosensitive currents in the neurites of cultured mouse sensory neurones. J Physiol 2006, 577:815-828.
  • [26]Drew LJ, Wood JN, Cesare P: Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J Neurosci 2002, 22:RC228.
  • [27]Drew LJ, Rugiero F, Cesare P, Gale JE, Abrahamsen B, Bowden S, Heinzmann S, Robinson M, Brust A, Colless B, et al.: High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain. PLoS One 2007, 2:e515.
  • [28]Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN: The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 2003, 550:739-752.
  • [29]Lawson SN: Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 2002, 87:239-244.
  • [30]Renganathan M, Cummins TR, Waxman SG: Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 2001, 86:629-640.
  • [31]Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, et al.: The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 1999, 2:541-548.
  • [32]Harty TP, Waxman SG: Inactivation properties of sodium channel Nav1.8 maintain action potential amplitude in small DRG neurons in the context of depolarization. Mol Pain 2007, 3:12. BioMed Central Full Text
  • [33]Drummond HA, Gebremedhin D, Harder DR: Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 2004, 44:643-648.
  • [34]Drummond HA, Price MP, Welsh MJ, Abboud FM: A molecular component of the arterial baroreceptor mechanotransducer. Neuron 1998, 21:1435-1441.
  • [35]Rugiero F, Wood JN: The mechanosensitive cell line ND-C does not express functional thermoTRP channels. Neuropharmacology 2009, 56:1138-1146.
  • [36]Askwith CC, Benson CJ, Welsh MJ, Snyder PM: DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc Natl Acad Sci USA 2001, 98:6459-6463.
  • [37]Babes A, Zorzon D, Reid G: A novel type of cold-sensitive neuron in rat dorsal root ganglia with rapid adaptation to cooling stimuli. Eur J Neurosci 2006, 24:691-698.
  • [38]Mogil JS, Wilson SG, Bon K, Lee SE, Chung K, Raber P, Pieper JO, Hain HS, Belknap JK, Hubert L, et al.: Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 1999, 80:67-82.
  • [39]Malik-Hall M, Poon WY, Baker MD, Wood JN, Okuse K: Sensory neuron proteins interact with the intracellular domains of sodium channel NaV1.8. Brain Res Mol Brain Res 2003, 110:298-304.
  • [40]Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN: Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 2002, 417:653-656.
  • [41]Momin A, Wood JN: Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 2008, 18:383-388.
  • [42]Sabatini BL, Regehr WG: Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J Neurosci 1997, 17:3425-3435.
  • [43]Wu XS, Sun JY, Evers AS, Crowder M, Wu LG: Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 2004, 100:663-670.
  • [44]Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG: A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc Natl Acad Sci USA 2006, 103:8245-8250.
  • [45]Hasegawa H, Abbott S, Han BX, Qi Y, Wang F: Analyzing somatosensory axon projections with the sensory neuron-specific Advillin gene. J Neurosci 2007, 27:14404-14414.
  • [46]Merillat AM, Charles RP, Porret A, Maillard M, Rossier B, Beermann F, Hummler E: Conditional gene targeting of the ENaC subunit genes Scnn1b and Scnn1g. Am J Physiol Renal Physiol 2009, 296:F249-F256.
  • [47]Stirling LC, Forlani G, Baker MD, Wood JN, Matthews EA, Dickenson AH, Nassar MA: Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain 2005, 113:27-36.
  • [48]McCarter GC, Reichling DB, Levine JD: Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci Lett 1999, 273:179-182.
  文献评价指标  
  下载次数:86次 浏览次数:35次