期刊论文详细信息
Skeletal Muscle
Pax3-induced expansion enables the genetic correction of dystrophic satellite cells
Rita CR Perlingeiro2  Michael Kyba1  R. Scott McIvor4  James M. Ervasti3  Auston Z. Miller2  Erik A. Toso1  Joseph J. Belanto3  Radbod Darabi2  Robert W. Arpke1  Fabrizio Rinaldi2  Antonio Filareto2 
[1] Department of Pediatrics, Lillehei Heart Institute, University of Minnesota, Minneapolis 55455, MN, USA;Department of Medicine, Lillehei Heart Institute, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis 55455, MN, USA;Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis 55455, MN, USA;Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455, MN, USA
关键词: Regeneration;    Pax3;    Dystrophin;    Sleeping Beauty;    Gene correction;    Muscular dystrophy;    Satellite cells;   
Others  :  1231174
DOI  :  10.1186/s13395-015-0061-7
 received in 2015-06-26, accepted in 2015-10-08,  发布年份 2015
PDF
【 摘 要 】

Background

Satellite cells (SCs) are indispensable for muscle regeneration and repair; however, due to low frequency in primary muscle and loss of engraftment potential after ex vivo expansion, their use in cell therapy is currently unfeasible. To date, an alternative to this limitation has been the transplantation of SC-derived myogenic progenitor cells (MPCs), although these do not hold the same attractive properties of stem cells, such as self-renewal and long-term regenerative potential.

Methods

We develop a method to expand wild-type and dystrophic fresh isolated satellite cells using transient expression of Pax3. This approach can be combined with genetic correction of dystrophic satellite cells and utilized to promote muscle regeneration when transplanted into dystrophic mice.

Results

Here, we show that SCs from wild-type and dystrophic mice can be expanded in culture through transient expression of Pax3, and these expanded activated SCs can regenerate the muscle. We test this approach in a gene therapy model by correcting dystrophic SCs from a mouse lacking dystrophin using a Sleeping Beauty transposon carrying the human μDYSTROPHIN gene. Transplantation of these expanded corrected cells into immune-deficient, dystrophin-deficient mice generated large numbers of dystrophin-expressing myofibers and improved contractile strength. Importantly, in vitro expanded SCs engrafted the SC compartment and could regenerate muscle after secondary injury.

Conclusion

These results demonstrate that Pax3 is able to promote the ex vivo expansion of SCs while maintaining their stem cell regenerative properties.

【 授权许可】

   
2015 Filareto et al.

【 预 览 】
附件列表
Files Size Format View
20151109081732442.pdf 1999KB PDF download
Fig. 6. 57KB Image download
Fig. 5. 102KB Image download
Fig. 4. 29KB Image download
Fig. 3. 119KB Image download
Fig. 2. 153KB Image download
Fig. 1. 110KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Mendell JR. Shilling C, Leslie, ND, Flanigan, KM, al-Dahhak, R, Gastier-Foster, J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012; 71:304-13.
  • [2]Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987; 51:919-28.
  • [3]Cohn RD, Campbell KP. Molecular basis of muscular dystrophies. Muscle Nerve. 2000; 23:1456-71.
  • [4]Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9:493-5.
  • [5]Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004; 84:209-38.
  • [6]Schultz E, Gibson MC, Champion T. Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool. 1978; 206:451-6.
  • [7]Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000; 102:777-86.
  • [8]Robertson TA, Grounds MD, Mitchell CA, Papadimitriou JM. Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle. J Struct Biol. 1990; 105:170-82.
  • [9]Robertson TA, Papadimitriou JM, Grounds MD. Fusion of myogenic cells to the newly sealed region of damaged myofibres in skeletal muscle regeneration. Neuropathol Appl Neurobiol. 1993; 19:350-8.
  • [10]Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P et al.. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010; 329:1078-81.
  • [11]Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA et al.. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005; 122:289-301.
  • [12]Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008; 456:502-6.
  • [13]Partridge TA, Grounds M, Sloper JC. Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature. 1978; 273:306-8.
  • [14]Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989; 337:176-9.
  • [15]Morgan JE, Pagel CN, Sherratt T, Partridge TA. Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. J Neurol Sci. 1993; 115:191-200.
  • [16]Mueller GM, O'Day T, Watchko JF, Ontell M. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice. Hum Gene Ther. 2002; 13:1081-90.
  • [17]Skuk D, Goulet M, Roy B, Tremblay JP. Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: toward defining strategies applicable to humans. Exp Neurol. 2002; 175:112-26.
  • [18]Ikemoto M, Fukada S, Uezumi A, Masuda S, Miyoshi H, Yamamoto H et al.. Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther. 2007; 15:2178-85.
  • [19]Skuk D, Paradis M, Goulet M, Chapdelaine P, Rothstein DM, Tremblay JP. Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther. 2010; 18:1689-97.
  • [20]Parker MH, Loretz C, Tyler AE, Duddy WJ, Hall JK, Olwin BB et al.. Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells. 2012; 30:2212-20.
  • [21]Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A et al.. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005; 309:2064-7.
  • [22]Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R et al.. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther. 2004; 9:475-82.
  • [23]Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R et al.. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006; 65:371-86.
  • [24]Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P et al.. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord. 2007; 17:38-46.
  • [25]Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW et al.. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995; 333:832-8.
  • [26]Partridge T, Lu QL, Morris G, Hoffman E. Is myoblast transplantation effective? Nat Med. 1998; 4:1208-9.
  • [27]Guerette B, Skuk D, Celestin F, Huard C, Tardif F, Asselin I, Tremblay JP. Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol. 1997; 159(5):2522-31.
  • [28]Fan Y, Maley M, Beilharz M, Grounds M. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve. 1996; 19:853-60.
  • [29]Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RC et al.. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells. 2008; 26:3194-204.
  • [30]Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis. 2006; 44:23-8.
  • [31]Arpke RW, Darabi R, Mader TL, Zhang Y, Toyama A, Lonetree CL et al.. A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells. 2013; 31:1611-20.
  • [32]Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T et al.. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 2013; 4:1549.
  • [33]Imai Y, Matsushima Y, Sugimura T, Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res. 1991; 19:2785.
  • [34]Filareto A, Darabi R, Perlingeiro RC. Engraftment of ES-derived myogenic progenitors in a severe mouse model of muscular dystrophy. J StemCell Res. 2012;10.
  • [35]Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev. 2006; 20:2450-64.
  • [36]Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF et al.. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med. 2002; 8:253-61.
  • [37]Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol. 2000; 150:1399-410.
  • [38]Mates L, Chuah MK, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A et al.. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009; 41:753-61.
  • [39]Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY et al.. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014; 20(3):255-64.
  • [40]Bentzinger CF, von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K et al.. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol. 2014; 205(1):97-111.
  文献评价指标  
  下载次数:112次 浏览次数:38次