期刊论文详细信息
Molecular Neurodegeneration
Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations
Kristel Sleegers5  Christine Van Broeckhoven5  Marc Cruts5  Peter Paul De Deyn3  Rik Vandenberghe4  Mathieu Vandenbulcke1  Sebastiaan Engelborghs2  Caroline Robberecht5  Bob Asselbergh5  Bavo Heeman5  Caroline Van Cauwenberghe5  Steven Vermeulen5  Karolien Bettens5 
[1] Department of Psychiatry and Memory Clinic, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium;Department of Neurology and Memory Clinic, Hospital Network Antwerp Middelheim and Hoge Beuken, Antwerp, Belgium;Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands;Laboratory for Cognitive Neurology, Department of Neurology, University of Leuven and University Hospitals Leuven Gasthuisberg, Leuven, Belgium;Institute Born-Bunge, Laboratory of Neurochemistry and Behavior, University of Antwerp, Antwerp, Belgium
关键词: Golgi;    Cell secretion;    β-chain;    Rare variant;    Mutations;    Clusterin;    Alzheimer’s disease;   
Others  :  1219844
DOI  :  10.1186/s13024-015-0024-9
 received in 2015-01-27, accepted in 2015-06-30,  发布年份 2015
PDF
【 摘 要 】

Background

The clusterin (CLU) gene has been identified as an important risk locus for Alzheimer’s disease (AD). Although the actual risk–increasing polymorphisms at this locus remain to be identified, we previously observed an increased frequency of rare non-synonymous mutations and small insertion-deletions of CLU in AD patients, which specifically clustered in the β-chain domain of CLU. Nonetheless the pathogenic nature of these variants remained unclear.

Here we report a novel non-synonymous CLU mutation (p.I360N) in a Belgian Alzheimer patient and have explored the pathogenic nature of this and 10 additional CLU mutations on protein localization and secretion in vitro using immunocytochemistry, immunodetection and ELISAs.

Results

Three patient-specific CLU mutations in the β-chain (p.I303NfsX13, p.R338W and p.I360N) caused an alteration of the subcellular CLU localization and diminished CLU transport through the secretory pathway, indicative of possible degradation mechanisms. For these mutations, significantly reduced CLU intensity was observed in the Golgi while almost all CLU protein was exclusively present in the endoplasmic reticulum. This was further confirmed by diminished CLU secretion in HEK293T and HEK293 FLp-In cell lines.

Conclusions

Our data lend further support to the contribution of rare coding CLU mutations in the pathogenesis of neurodegenerative diseases. Functional analyses suggest reduced secretion of the CLU protein as the mode of action for three of the examined CLU mutations. One of those is a frameshift mutation leading to a loss of secreted protein, and the other two mutations are amino acid substitutions in the disulfide bridge region, possibly interfering with heterodimerization of the α- and β-chain of CLU.

【 授权许可】

   
2015 Bettens et al.

【 预 览 】
附件列表
Files Size Format View
20150719040514503.pdf 2001KB PDF download
Fig. 4. 64KB Image download
Fig. 3. 56KB Image download
Fig. 2. 51KB Image download
Fig. 1. 96KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al.. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet. 2009; 41:1088-1093.
  • [2]Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al.. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 2009; 41:1094-1099.
  • [3]Bettens K, Brouwers N, Engelborghs S, Lambert J-C, Rogaeva E, Vandenberghe R et al.. Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk. Mol Neurodegener. 2012; 7:3. BioMed Central Full Text
  • [4]Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003; 31:3812-3814.
  • [5]Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al.. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7:248-249.
  • [6]Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer's disease. Brain Res Rev. 2009; 61:89-104.
  • [7]Pasinetti GM, Johnson SA, Oda T, Rozovsky I, Finch CE. Clusterin (SGP-2): a multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J Comp Neurol. 1994; 339:387-400.
  • [8]Saura J, Petegnief V, Wu X, Liang Y, Paul SM. Microglial apolipoprotein E and astroglial apolipoprotein J expression in vitro: opposite effects of lipopolysaccharide. J Neurochem. 2003; 85:1455-1467.
  • [9]Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD et al.. Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem. 2005; 280:14212-14221.
  • [10]Ling IF, Bhongsatiern J, Simpson JF, Fardo DW, Estus S. Genetics of clusterin isoform expression and Alzheimer's disease risk. PLoS One. 2012; 7: Article ID e33923
  • [11]Kimura K, Yamamoto M. Modification of the alternative splicing process of testosterone-repressed prostate message-2 (TRPM-2) gene by protein synthesis inhibitors and heat shock treatment. Biochim Biophys Acta. 1996; 1307:83-88.
  • [12]Leskov KS, Klokov DY, Li J, Kinsella TJ, Boothman DA. Synthesis and functional analyses of nuclear clusterin, a cell death protein. J Biol Chem. 2003; 278:11590-11600.
  • [13]Prochnow H, Gollan R, Rohne P, Hassemer M, Koch-Brandt C, Baiersdorfer M. Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-kappaB signaling pathway. PLoS One. 2013; 8: Article ID e75303
  • [14]Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al.. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013; 45:1452-1458.
  • [15]Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger KA et al.. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-beta(1–40) peptide. Nat Struct Mol Biol. 2011; 19:79-83.
  • [16]Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations. Int J Biochem Cell Biol. 1995; 27:633-645.
  • [17]Thambisetty M, An Y, Kinsey A, Koka D, Saleem M, Guntert A et al.. Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment. Neuroimage. 2012; 59:212-217.
  • [18]Dabbs RA, Wilson MR. Expression and purification of chaperone-active recombinant clusterin. PLoS One. 2014; 9: Article ID e86989
  • [19]Zhou Y, Hayashi I, Wong J, Tugusheva K, Renger JJ, Zerbinatti C. Intracellular clusterin interacts with brain isoforms of the bridging integrator 1 and with the microtubule-associated protein tau in Alzheimer's disease. PLoS One. 2014; 9: Article ID e103187
  • [20]Engelborghs S, Dermaut B, Goeman J, Saerens J, Marien P, Pickut BA et al.. Prospective Belgian study of neurodegenerative and vascular dementia: APOE genotype effects. J Neurol Neurosurg Psychiatry. 2003; 74:1148-1151.
  • [21]Engelborghs S, Dermaut B, Marien P, Symons A, Vloeberghs E, Maertens K et al.. Dose dependent effect of APOE epsilon4 on behavioral symptoms in frontal lobe dementia. Neurobiol Aging. 2006; 27:285-292.
  • [22]Bettens K, Brouwers N, van Miegroet H, Gil A, Engelborghs S, De Deyn PP et al.. Follow-Up study of susceptibility loci for Alzheimer's disease and onset Age identified by genome-wide association. J Alzheimers Dis. 2009; 19:1169-1175.
  • [23]Reumers J, De Rijk P, Zhao H, Liekens A, Smeets D, Cleary J, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol. 2011.
  • [24]Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26:589-595.
  • [25]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20:1297-1303.
  • [26]Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al.. A map of human genome variation from population-scale sequencing. Nature. 2010; 467:1061-1073.
  • [27]Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005; 21:3176-3178.
  • [28]Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc Neurosci. 2006; 4:Unit 4.21.
  • [29]Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012; 9:671-675.
  文献评价指标  
  下载次数:2次 浏览次数:9次