期刊论文详细信息
Molecular Pain
Expression changes of microRNA-1 and its targets Connexin 43 and brain-derived neurotrophic factor in the peripheral nervous system of chronic neuropathic rats
Timo Brandenburger2  Robert Werdehausen2  Franziska Barthel2  Henning Hermanns1  Elena Neumann2 
[1] Department of Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1100 DD, The Netherlands;Department of Anesthesiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
关键词: Chronic constriction injury (CCI);    Neuropathic pain;    BDNF;    Connexin 43 (Cx43);    miR-1;    microRNA;   
Others  :  1217326
DOI  :  10.1186/s12990-015-0045-y
 received in 2015-05-11, accepted in 2015-06-18,  发布年份 2015
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are involved in the neuroplastic changes which induce and maintain neuropathic pain. However, it is unknown whether nerve injury leads to altered miRNA expression and modulation of pain relevant target gene expression within peripheral nerves. In the present study, expression profiles of miR-1 and the pain-relevant targets, brain derived neurotrophic factor (BDNF) and Connexin 43 (Cx43), were studied in peripheral neuropathic pain, which was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. The expression of miR-1 was investigated in the sciatic nerve, dorsal root ganglion (DRG) and the ipsilateral spinal cord by qPCR. Changes of BDNF and Cx43 expression patterns were studied using qPCR, Western blot analysis, ELISA and immunohistochemistry.

Results

In sciatic nerves of naïve rats, expression levels of miR-1 were more than twice as high as in DRG and spinal cord. In neuropathic rats, CCI lead to a time-dependent downregulation of miR-1 in the sciatic nerve but not in DRG and spinal cord. Likewise, protein expression of the miR-1 targets BDNF and Cx43 was upregulated in the sciatic nerve and DRG after CCI. Immunohistochemical staining revealed an endoneural abundancy of Cx43 in injured sciatic nerves which was absent after Sham operation.

Conclusions

This study demonstrates that CCI leads to a regulation of miRNAs (miR-1) in the peripheral nervous system. This regulation is associated with alterations in the expression and localization of the miR-1 dependent pain-relevant proteins BDNF and Cx43. Further studies will have to explore the function of miRNAs in the context of neuropathic pain in the peripheral nervous system.

【 授权许可】

   
2015 Neumann et al.

【 预 览 】
附件列表
Files Size Format View
20150706043655861.pdf 1808KB PDF download
Figure7. 112KB Image download
Figure6. 106KB Image download
Figure5. 33KB Image download
Figure4. 38KB Image download
Figure3. 39KB Image download
Figure2. 11KB Image download
Figure1. 18KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

【 参考文献 】
  • [1]von Hehn CA, Baron R, Woolf CJ: Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012, 73(4):638-652.
  • [2]Baron R, Binder A, Wasner G: Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 2010, 9(8):807-819.
  • [3]Gangadharan V, Kuner R: Pain hypersensitivity mechanisms at a glance. Dis Model Mech. 2013, 6(4):889-895.
  • [4]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
  • [5]Li Z, Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014, 13(8):622-638.
  • [6]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.
  • [7]Bali KK, Kuner R: Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med. 2014, 20(8):437-448.
  • [8]Andersen HH, Duroux M, Gazerani P: MicroRNAs as modulators and biomarkers of inflammatory and neuropathic pain conditions. Neurobiol Dis 2014, 71C:159-168.
  • [9]Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, et al.: Differential expression of microRNAs in mouse pain models. Mol Pain. 2011, 7:17. BioMed Central Full Text
  • [10]Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007, 13(4):486-491.
  • [11]Brandenburger T, Grievink H, Heinen N, Barthel F, Huhn R, Stachuletz F, et al.: Effects of remote ischemic preconditioning and myocardial ischemia on microRNA-1 expression in the rat heart in vivo. Shock. 2014, 42(3):234-238.
  • [12]Gold MS, Gebhart GF: Nociceptor sensitization in pain pathogenesis. Nat Med 2010, 16(11):1248-1257.
  • [13]Wu D, Murashov AK: Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol. 2013, 4:55.
  • [14]Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, et al.: Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 2007, 132(3):237-251.
  • [15]Sun E, Shi Y: MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2015, 268:46-53.
  • [16]Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T: Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 2009, 164(2):711-723.
  • [17]Brandenburger T, Strehler EE, Filoteo AG, Caride AJ, Aumuller G, Post H, et al.: Switch of PMCA4 splice variants in bovine epididymis results in altered isoform expression during functional sperm maturation. J Biol Chem 2011, 286(10):7938-7946.
  • [18]Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, et al.: Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 2011, 30(18):3830-3841.
  • [19]Sakai A, Suzuki H: Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun. 2013, 435(2):176-181.
  • [20]Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A: MicroRNA-124 as a novel treatment for persistent hyperalgesia. J Neuroinflammation. 2012, 9:143. BioMed Central Full Text
  • [21]Im YB, Jee MK, Jung JS, Choi JI, Jang JH, Kang SK: miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Antioxid Redox Signal 2012, 16(10):1046-1060.
  • [22]Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H: miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain. 2013, 136(Pt 9):2738-2750.
  • [23]Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, et al.: Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 2014, 82(1):47-54.
  • [24]Kynast KL, Russe OQ, Geisslinger G, Niederberger E: Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets. Expert Rev Neurother 2013, 13(5):515-525.
  • [25]Kress M, Huttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, et al.: microRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci. 2013, 6:33.
  • [26]Elramah S, Landry M, Favereaux A: MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci. 2014, 8:31.
  • [27]Lutz BM, Bekker A, Tao YX: Noncoding RNAs: new players in chronic pain. Anesthesiology 2014, 121(2):409-417.
  • [28]Sakai A, Suzuki H: Emerging roles of microRNAs in chronic pain. Neurochem Int. 2014, 77:58-67.
  • [29]Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J: MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011, 31(48):17358-17369.
  • [30]Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB: Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 2010, 16(8):1516-1529.
  • [31]Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H: Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 1992, 119(1):45-54.
  • [32]Campana WM: Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun 2007, 21(5):522-527.
  • [33]Smith PA: BDNF: no gain without pain? Neuroscience 2014, 26(283):107-123.
  • [34]Bennett MV, Garre JM, Orellana JA, Bukauskas FF, Nedergaard M, Saez JC: Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 2012, 1487:3-15.
  • [35]Chen G, Park CK, Xie RG, Berta T, Nedergaard M, Ji RR: Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain. 2014, 137(Pt 8):2193-2209.
  • [36]Bennett G, Xie Y: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33(1):87-107.
  • [37]Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlosser L, Werdehausen R, et al.: Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 2012, 506(2):281-286.
  • [38]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [39]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30(9):e36.
  • [40]Brandenburger T, Huhn R, Galas A, Pannen BH, Keitel V, Barthel F, et al.: Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo. J Transl Med. 2014, 12:228. BioMed Central Full Text
  文献评价指标  
  下载次数:77次 浏览次数:30次