期刊论文详细信息
Molecular Pain
Function and postnatal changes of dural afferent fibers expressing TRPM8 channels
Yu-Qing Cao1  Ajay Dhaka2  Lynn Ren1 
[1] Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis 63110, MO, USA;Department of Biological Structure, Neurobiology and Behavior Graduate Program, University of Washington, Seattle 98195, WA, USA
关键词: Dural afferent fibers;    CGRP;    TRPM8;    Headache;    Migraine;   
Others  :  1217328
DOI  :  10.1186/s12990-015-0043-0
 received in 2015-06-03, accepted in 2015-06-12,  发布年份 2015
PDF
【 摘 要 】

Background

Genome-wide association studies have identified TRPM8 (transient receptor potential melastatin 8) as one of the susceptibility genes for common migraine. Here, we investigated the postnatal changes of TRPM8-expressing dural afferent fibers as well as the function of dural TRPM8 channels in mice.

Results

First, we quantified the density and the number of axonal branches of TRPM8-expressing fibers in the dura of mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from one TRPM8 allele between postnatal day 2 (P2) to adulthood. The number of axonal branches on individual dural EGFP-positive fibers was decreased by 30% between P2 and P11. The density of dural EGFP-positive fibers was subsequently reduced by 50% between P16 and P21. Conversely, the density and the number of branches of axons expressing calcitonin gene-related peptide remained stable in postnatal mouse dura. The density of TRPM8-expressing fibers innervating the mouse cornea epithelium was significantly increased from P2 to adulthood. Next, we tested the function of dural TRPM8 channels in adult mice and found that TRPM8 agonist menthol effectively inhibited the nocifensive behavior evoked by dural application of inflammatory mediators.

Conclusions

Our results indicate that the TRPM8-expressing dural afferent fibers undergo cell- and target tissue-specific axonal pruning during postnatal development. Activation of dural TRPM8 channels decreases meningeal irritation-evoked nocifensive behavior in adult mice. This provides a framework to further explore the role of postnatal changes of TRPM8-expressing dural afferents in the pathophysiology of pediatric and adult migraine.

【 授权许可】

   
2015 Ren et al.

【 预 览 】
附件列表
Files Size Format View
20150706043736821.pdf 3266KB PDF download
Figure7. 50KB Image download
Figure6. 44KB Image download
Figure5. 42KB Image download
Figure4. 59KB Image download
Figure3. 58KB Image download
Figure2. 63KB Image download
Figure1. 34KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

【 参考文献 】
  • [1]Victor TW, Hu X, Campbell JC, Buse DC, Lipton RB: Migraine prevalence by age and sex in the United States: a life-span study. Cephalalgia Int J Headache 2010, 30:1065-1072.
  • [2]Headache Classification Subcommittee of the International Headache Society: The international classification of headache disorders: 3rd edition (beta version) Cephalalgia Int J Headache 2013, 33:629-808.
  • [3]Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR: Neurobiology of migraine. Neuroscience 2009, 161:327-341.
  • [4]Pietrobon D, Moskowitz MA: Pathophysiology of migraine. Annu Rev Physiol 2013, 75:365-391.
  • [5]Strassman AM, Raymond SA, Burstein R: Sensitization of meningeal sensory neurons and the origin of headaches. Nature 1996, 384:560-564.
  • [6]Chasman DI, Schurks M, Anttila V, de Vries B, Schminke U, Launer LJ, et al.: Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 2011, 43:695-698.
  • [7]Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AM: Pearls and pitfalls in genetic studies of migraine. Cephalalgia Int J Headache 2013, 33:614-625.
  • [8]Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, Pozo-Rosich P, et al.: Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 2012, 44:777-782.
  • [9]Julius D: TRP channels and pain. Annu Rev Cell Dev Biol 2013, 29:355-384.
  • [10]Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, et al.: The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448:204-208.
  • [11]Dhaka A, Earley TJ, Watson J, Patapoutian A: Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 2008, 28:566-575.
  • [12]McKemy DD, Neuhausser WM, Julius D: Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416:52-58.
  • [13]Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al.: A TRP channel that senses cold stimuli and menthol. Cell 2002, 108:705-715.
  • [14]Harrington AM, Hughes PA, Martin CM, Yang J, Castro J, Isaacs NJ, et al.: A novel role for TRPM8 in visceral afferent function. Pain 2011, 152:1459-1468.
  • [15]Hayashi T, Kondo T, Ishimatsu M, Yamada S, Nakamura K, Matsuoka K, et al.: Expression of the TRPM8-immunoreactivity in dorsal root ganglion neurons innervating the rat urinary bladder. Neurosci Res 2009, 65:245-251.
  • [16]Takashima Y, Daniels RL, Knowlton W, Teng J, Liman ER, McKemy DD: Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 2007, 27:14147-14157.
  • [17]Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, et al.: Attenuated cold sensitivity in TRPM8 null mice. Neuron 2007, 54:379-386.
  • [18]Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A: TRPM8 is required for cold sensation in mice. Neuron 2007, 54:371-378.
  • [19]Knowlton WM, Palkar R, Lippoldt EK, McCoy DD, Baluch F, Chen J, et al.: A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 2013, 33:2837-2848.
  • [20]Liu B, Fan L, Balakrishna S, Sui A, Morris JB, Jordt SE: TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 2013, 154:2169-2177.
  • [21]Pogorzala LA, Mishra SK, Hoon MA: The cellular code for mammalian thermosensation. J Neurosci 2013, 33:5533-5541.
  • [22]Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F: Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci 2005, 25:11322-11329.
  • [23]Proudfoot CJ, Garry EM, Cottrell DF, Rosie R, Anderson H, Robertson DC, et al.: Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol CB 2006, 16:1591-1605.
  • [24]Prince PB, Rapoport AM, Sheftell FD, Tepper SJ, Bigal ME: The effect of weather on headache. Headache 2004, 44:596-602.
  • [25]Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH: An association between migraine and cutaneous allodynia. Ann Neurol 2000, 47:614-624.
  • [26]Borhani Haghighi A, Motazedian S, Rezaii R, Mohammadi F, Salarian L, Pourmokhtari M, et al.: Cutaneous application of menthol 10% solution as an abortive treatment of migraine without aura: a randomised, double-blind, placebo-controlled, crossed-over study. Int J Clin Pract 2010, 64:451-456.
  • [27]Burgos-Vega CC, Ahn DD, Bischoff C, Wang W, Horne D, Wang J, et al.: Meningeal transient receptor potential channel M8 activation causes cutaneous facial and hindpaw allodynia in a preclinical rodent model of headache. Cephalalgia Int J Headache. 2015.
  • [28]Huang D, Li SY, Dhaka A, Story GM, Cao YQ: Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura. Molecular pain 2012, 8:66. BioMed Central Full Text
  • [29]Newsom J, Holt JL, Neubert JK, Caudle R, Ahn AH. A high density of TRPM8 expressing sensory neurons in specialized structures of the head. Society for Neuroscience Meeting Abstract. 2012.
  • [30]Ho TW, Edvinsson L, Goadsby PJ: CGRP and its receptors provide new insights into migraine pathophysiology. Nat Rev Neurol 2010, 6:573-582.
  • [31]Strassman AM, Weissner W, Williams M, Ali S, Levy D: Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 2004, 473:364-376.
  • [32]Tsai SH, Tew JM, McLean JH, Shipley MT: Cerebral arterial innervation by nerve fibers containing calcitonin gene-related peptide (CGRP): I. Distribution and origin of CGRP perivascular innervation in the rat. J Comp Neurol 1988, 271:435-444.
  • [33]Canning J, Takai Y, Tilly JL: Evidence for genetic modifiers of ovarian follicular endowment and development from studies of five inbred mouse strains. Endocrinology 2003, 144:9-12.
  • [34]Ivanusic JJ, Wood RJ, Brock JA: Sensory and sympathetic innervation of the mouse and guinea pig corneal epithelium. J Comp Neurol 2013, 521:877-893.
  • [35]Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, et al.: Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 2010, 16:1396-1399.
  • [36]McKenna CC, Lwigale PY: Innervation of the mouse cornea during development. Invest Ophthalmol Vis Sci 2011, 52:30-35.
  • [37]Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, De Felice M, et al.: Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol 2009, 65:184-193.
  • [38]Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R: A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci USA 2001, 98:9930-9935.
  • [39]Melo-Carrillo A, Lopez-Avila A: A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia Int J Headache. 2013, 33:1096-1105.
  • [40]Mitsikostas DD, Sanchez del Rio M, Waeber C: 5-Hydroxytryptamine(1B/1D) and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis. Cephalalgia Int J Headache 2002, 22:384-394.
  • [41]Oshinsky ML, Gomonchareonsiri S: Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 2007, 47:1026-1036.
  • [42]Wieseler J, Ellis A, Sprunger D, Brown K, McFadden A, Mahoney J, et al.: A novel method for modeling facial allodynia associated with migraine in awake and freely moving rats. J Neurosci Methods 2010, 185:236-245.
  • [43]Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM: Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 2007, 130:166-176.
  • [44]Hondoh A, Ishida Y, Ugawa S, Ueda T, Shibata Y, Yamada T, et al.: Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex. Brain Res 2010, 1319:60-69.
  • [45]Munns C, AlQatari M, Koltzenburg M: Many cold sensitive peripheral neurons of the mouse do not express TRPM8 or TRPA1. Cell Calcium 2007, 41:331-342.
  • [46]Staaf S, Franck MC, Marmigere F, Mattsson JP, Ernfors P: Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene expression patterns : GEP 2010, 10:65-74.
  • [47]Takashima Y, Ma L, McKemy DD: The development of peripheral cold neural circuits based on TRPM8 expression. Neuroscience 2010, 169:828-842.
  • [48]Horgan K, O’Connor TP, van der Kooy D: Prenatal specification and target induction underlie the enrichment of calcitonin gene-related peptide in the trigeminal ganglion neurons projecting to the cerebral vasculature. J Neurosci 1990, 10:2485-2492.
  • [49]O’Connor TP, Van der Kooy D: Cell death organizes the postnatal development of the trigeminal innervation of the cerebral vasculature. Brain Res 1986, 392:223-233.
  • [50]De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, et al.: Capturing the aversive state of cephalic pain preclinically. Ann Neurol 2013, 74:257-265.
  • [51]Huang DY, Liu P, Yanagawa Y, Cao YQ. Activation of trigeminal nociceptive pathway by dural application of inflammatory mediators in mice. Society for Neuroscience Meeting Abstract. 2011.
  • [52]Vinuela-Fernandez I, Sun L, Jerina H, Curtis J, Allchorne A, Gooding H, et al.: The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity. Neuropharmacology 2014, 79:136-151.
  • [53]Linte RM, Ciobanu C, Reid G, Babes A: Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res 2007, 178:89-98.
  • [54]Zhang X, Mak S, Li L, Parra A, Denlinger B, Belmonte C, et al.: Direct inhibition of the cold-activated TRPM8 ion channel by Galphaq. Nat Cell Biol 2012, 14:851-858.
  • [55]Andersson DA, Nash M, Bevan S: Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 2007, 27:3347-3355.
  • [56]Liu B, Qin F: Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci 2005, 25:1674-1681.
  • [57]Rohacs T, Lopes CM, Michailidis I, Logothetis DE: PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 2005, 8:626-634.
  • [58]Vanden Abeele F, Zholos A, Bidaux G, Shuba Y, Thebault S, Beck B, et al.: Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J Biol Chem 2006, 281:40174-40182.
  • [59]Asuthkar S, Demirkhanyan L, Sun X, Elustondo PA, Krishnan V, Baskaran P, et al.: The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. J Biol Chem 2015, 290:2670-2688.
  • [60]Asuthkar S, Elustondo PA, Demirkhanyan L, Sun X, Baskaran P, Velpula KK, et al.: The TRPM8 protein is a testosterone receptor: I. Biochemical evidence for direct TRPM8-testosterone interactions. J Biol Chem 2015, 290:2659-2669.
  • [61]Muniak MA, Mayko ZM, Ryugo DK, Portfors CV (2012) Preparation of an awake mouse for recording neural responses and injecting tracers. J Visual Exp JoVE.
  文献评价指标  
  下载次数:1次 浏览次数:4次