期刊论文详细信息
Radiation Oncology
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation
Xiongfei Liao1  Shengwei Kang1  Jie Li1  Mingyong Xiao1  Jian Li1  Pei Wang1  Xianliang Wang1  Gang Yin1  Guohai Qi1  Yanqun Zhao1 
[1] Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu 610041, Sichuan, China
关键词: Intensity-modulated radiation therapy;    Monte Carlo;    Lung cancer;    Pencil beam convolution;    Collapsed cone convolution;    3-Dimensional conformal radiation therapy;   
Others  :  1150578
DOI  :  10.1186/s13014-014-0287-2
 received in 2014-07-03, accepted in 2014-12-04,  发布年份 2014
PDF
【 摘 要 】

Background

The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology.

Methods and materials

Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared.

Result

For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm3, the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant.

Conclusions

PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately calculate the dose distribution in lung cancer and can provide a notably effective tool for benchmarking the performance of other dose calculation algorithms within patients.

【 授权许可】

   
2014 Zhao et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405201013894.pdf 1854KB PDF download
Figure 4. 34KB Image download
Figure 3. 213KB Image download
Figure 2. 20KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Papanikolaou N, Battista J, Boyer A, Kappas C, Klein E, Mackie T, Sharpe M, Van Dyk J: Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Report No. 85, Task Group No 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. Medical Physics Publishing, Madison, WI; 2004.
  • [2]Vinall AJ, Williams AJ, Currie VE, Currie A, Van Esch A, Huyskes D: Practical guideline for routine intensity-modulated radiotherapy verification: pre-treatment verification with portal dosimetry and treatment verification with in vivo dosimetry. Br J Radiol 2010, 83(995):949-957.
  • [3]International Commission of Radiation Units and Measurements: ICRU Report No.83: Prescribing, recording, and reporting intensity-modulated photon-beam therapy (IMRT). International Commission of Radiation Units and Measurements, Bethseda; 2010.
  • [4]Ramon Alfredo C. Siochi, Andrea Molineu: Patient-specific QA for IMRT should be performed using software rather than hardware methods Med Phys 2013, 40(7):070601-1- 070601–3
  • [5]Nelms BE, Zhen HM, Tome WA: Per-beam planar IMRT QA passing rates do not predict clinically relevant patient dose errors. Med Phys 2011, 38(2):1037-1043.
  • [6]Wilcox EE, Daskalov GM, Pavlonnis G, Shumway R, Kaplan B, VanRoov E: Dosimetric verification of intensity modulated radiation therapy of 172 patients treated for various disease sites: Comparision of EBT film dosimetry, ion chamber measurements and independent MU calculation. Med Dosim 2008, 33(4):303-309.
  • [7]Dobler B, Walter C, Knopf A, Fabri D, Loeschel R, Polednik M, Schneider F, Wenz F, Lohr F: Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms. Radiat Oncol 2006, 1:45. BioMed Central Full Text
  • [8]Reynaert N, Van der Mark SC, Schaart DR, Xan Der Zee W, Van Vliet-Vroegindeweij C, Tomsej M, Jansen J, Heijmen B, Coghe M, De Wagter C: Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 2007, 76(4):643-686.
  • [9]Carrasco P, Jornet N, Duch MA, Weber L, Ginjaume M, Eudaldo T, Jurado D, Ruiz A, Ribas M: Comparison of dose calculation algorithms in phantom with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium. Med Phys 2004, 31(10):2899-2911.
  • [10]Koelbl O, Krieger T, Haedinger U, Sauer O, Flentje M: Influence of calculation algorithm on dose distribution in irradiation of non-small cell lung cancer (NSCLC) collapsed cone versus pencil beam. Strahlenther Onkol 2004, 180(12):783-788.
  • [11]Haedinger U, Krieger T, Flentje M, Wulf J: Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets. Int J Radiat Oncol Biol Phys 2005, 61(1):239-249.
  • [12]Krieger T, Sauer OA: Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol 2005, 50(5):859-868.
  • [13]Vanderstraeten B, Reynaert N, Paelinck L, Madani I, De Wagter C, De Gersem W, De Neve W, Thierens H: Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 2006, 33(9):3149-3158.
  • [14]Seco J, Adams E, Bidmead M, Partridge M, Verhaegen F: Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine. Phys Med Biol 2005, 50(5):817-830.
  • [15]Wang L, Yorke E, Chui CS: Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and Lung treatments. Med Phys 2002, 29(11):2705-2717.
  • [16]Yang J, Li J, Chen L, Price R, McNeeley S, Qin L, Wang L, Xiong W, Ma CM: Dosimetric verification of IMRT treatment planning using Monte Carlo simulation for prostate cancer. Phys Med Biol 2005, 50(5):869-878.
  • [17]Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS: The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol 2009, 91(3):405-414.
  • [18]Kawrakow I, Rogers D: The EGSnrc code system:Monte Carlo simulation of electron and photon transport. Ionizing radiation standards national research council of Canada, Ottawa; 2010.
  • [19]Walters S, Kawrakow , Rogers DWO, Rogers : DOSXYZnrc users manual. Ionizing radiation standards national research council of Canada, Ottawa; 2009.
  • [20]Ma CM, Li JS, Pawlicki T, Jiang SB, Deng J, Lee MC, Koumrian T, Luxton M, Brain S: A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 2002, 47(10):1671-1689.
  • [21]Aljarrah K, Pawlickj T, Niemierko A: A clinical study of MLC-based IMTT lung dose calculation accuracy on plan evaluation parameters. J Cancer Sci Ther 2010, 2(3):074-081.
  • [22]De Neve W, De Wagter C: Lethal pneumonitis in a phase I study of chemotherapy and IMRT for NSCLC: the need to investigate the accuracy of dose computation. Radiother Oncol 2005, 75(2):246-247.
  • [23]Kornelsen RO, Young MEJ: Changes in the dose-profile of a10 MV x-ray beam within and beyond low density material. Med Phys 1982, 9(1):114-116.
  • [24]Miller RC, Bonner JA, Kline RW: Impact of beam energy and field margin on penumbra at lung tumor-lung parenchyma interfaces. Int J Radiat Oncol Biol Phys 1998, 41(3):707-713.
  • [25]Zhao Y-q, Wang P, Li J, Xiao M-y, Lang Jin-yi Wu D-k: Compare the calculation precision of collapsed cone convolution and pencil beam convolution algorithm in heterogeneous tissue. Chin J Radiat Oncol 2012, 21(1):72-76.
  • [26]Werner BL, Das IJ, Khan FM, Meigooni AS: Dose perturbations at interfaces in photon beams. Med Phys 1987, 14(4):585-595.
  • [27]Mijnheer BJ, Rice RK, Chin LM: Lead-polystyrene transition zone dosimetry in high-energy photon beams. Radiother Oncol 1988, 11(4):379-386.
  • [28]Mackie TR, El-Kathib E, Battista J, Scrimger J, Van Dyk J, Cunningham JR: Lung dose corrections for 6- and 15-MV x rays. Med Phys 1985, 12(3):327-332.
  • [29]Rice RK, Mijnheer BJ, Chin LM: Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 1988, 15(2):399-409.
  • [30]Ahnesjö A: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 1989, 16(4):577-592.
  • [31]Ahnesjö A, Saxner M, Trepp A: A pencil beam model for photon dose calculation. Med Phys 1992, 19(2):263-273.
  • [32]Chen H, Lohr F, Fritz P, Wenz F, Dobler B, Lorenz F, Mühlnickel W: Stereotactic, single-dose irradiation of lung tumors: a comparison of absolute dose and dose distribution between pencil beam and monte carlo algorithms based on actual patient CT scan. Int J Radiat Oncol Biol Phys 2010, 78(3):955-963.
  • [33]Liu HH, Keall P: Dm rather than Dw should be used in Monte Carlo treatment planning. Med Phys 2002, 29(5):922-923.
  • [34]Siebers JV, Kell PJ, Nahum AE, Mohan R: Converting absorbed dose to medium to absorbed dose to water for Monte Carlo, based photon beam dose calculations. Phys Med Bio 2004, 45(4):983-995.
  • [35]Kry SF, Alvarez P, Molineu A, Amador C, Galvin J, Followill DS: Algorithms used in heterogeneous dose calculations show systematic differences as measured with the radiological physics center’s anthropomorphic thorax phantom used for RTOG credentialing. Int J Radiat Oncol Biol Phys 2013, 85(1):e95-e100.
  文献评价指标  
  下载次数:49次 浏览次数:22次