期刊论文详细信息
Particle and Fibre Toxicology
Evaluation of reference genes for insect olfaction studies
Marcelo Gustavo Lorenzo2  Rickard Ignell1  Ivana Helena Rocha Oliveira2  Jose Manuel Latorre-Estivalis2  Bonaventure Aman Omondi3 
[1] Chemical Ecology Unit, Department of Plant Protection Biology, SLU, Alnarp, Sweden;Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil;Current address: Bioversity International, Consultative Group for International Agricultural Research, Bujumbura, Burundi
关键词: Olfaction and triatomines;    Normalization process;    Reference genes;    RT-qPCR;   
Others  :  1181787
DOI  :  10.1186/s13071-015-0862-x
 received in 2015-01-12, accepted in 2015-04-15,  发布年份 2015
PDF
【 摘 要 】

Background

Quantitative reverse transcription PCR (qRT-PCR) is a robust and accessible method to assay gene expression and to infer gene regulation. Being a chain of procedures, this technique is subject to systematic error due to biological and technical limitations mainly set by the starting material and downstream procedures. Thus, rigorous data normalization is critical to grant reliability and repeatability of gene expression quantification by qRT-PCR. A number of ‘housekeeping genes’, involved in basic cellular functions, have been commonly used as internal controls for this normalization process. However, these genes could themselves be regulated and must therefore be tested a priori.

Methods

We evaluated eight potential reference genes for their stability as internal controls for RT-qPCR studies of olfactory gene expression in the antennae of Rhodnius prolixus, a Chagas disease vector. The set of genes included were: α-tubulin; β-actin; Glyceraldehyde-3-phosphate dehydrogenase; Eukaryotic initiation factor 1A; Glutathione-S-transferase; Serine protease; Succinate dehydrogenase; and Glucose-6-phosphate dehydrogenase. Five experimental conditions, including changes in age,developmental stage and feeding status were tested in both sexes.

Results

We show that the evaluation of candidate reference genes is necessary for each combination of sex, tissue and physiological condition analyzed in order to avoid inconsistent results and conclusions. Although, Normfinder and geNorm software yielded different results between males and females, five genes (SDH, Tub, GAPDH, Act and G6PDH) appeared in the first positions in all rankings obtained. By using gene expression data of a single olfactory coreceptor gene as an example, we demonstrated the extent of changes expected using different internal standards.

Conclusions

This work underlines the need for a rigorous selection of internal standards to grant the reliability of normalization processes in qRT-PCR studies. Furthermore, we show that particular physiological or developmental conditions require independent evaluation of a diverse set of potential reference genes.

【 授权许可】

   
2015 Omondi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150515080628272.pdf 927KB PDF download
Figure 3. 62KB Image download
Figure 2. 39KB Image download
Figure 1. 20KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Guhl F, Pinto N, Aguilera G. Sylvatic triatominae: a new challenge in vector control transmission. Mem Inst Oswaldo Cruz. 2009; 104 Suppl 1:71-5.
  • [2]Lent H, Wygodzinsky P. Revision of the triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Revisión de los triatominae (Hemiptera, Reduviidae) y su significado como vectores del mal de Chagas. Bull Am Mus Nat Hist. 1979; 163:123-520.
  • [3]Hashimoto K, Schofield CJ. Elimination of Rhodnius prolixus in Central America. Parasit Vectors. 2012; 5:45. BioMed Central Full Text
  • [4]Oliveira MF, Silva JR, Dansa-Petretski M, de Souza W, Braga C, Masuda H et al.. Haemozoin formation in the midgut of the blood-sucking insect Rhodnius prolixus. FEBS Lett. 2000; 477:95-8.
  • [5]Paes MC, Oliveira MB, Oliveira PL. Hydrogen peroxide detoxification in the midgut of the blood-sucking insect, Rhodnius prolixus. Arch Insect Biochem Physiol. 2001; 48:63-71.
  • [6]Maddrell S. Excretion in the blood-sucking bug, Rhodnius prolixus Stål. I: The control of diuresis. J Exp Biol. 1963; 40:247-56.
  • [7]Maddrell S, Herman W, Mooney R, Overton J. 5-Hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus. J Exp Biol. 1991; 156:557-66.
  • [8]Te Brugge V, Paluzzi J-P, Schooley DA, Orchard I. Identification of the elusive peptidergic diuretic hormone in the blood-feeding bug Rhodnius prolixus: a CRF-related peptide. J Exp Biol. 2011; 214:371-81.
  • [9]Paluzzi J-PV, Young P, Defferrari MS, Orchard I, Carlini CR, O’Donnell MJ. Investigation of the potential involvement of eicosanoid metabolites in anti-diuretic hormone signaling in Rhodnius prolixus. Peptides. 2012; 34:127-34.
  • [10]Paluzzi J-P, Yeung C, O’Donnell MJ. Investigations of the signaling cascade involved in diuretic hormone stimulation of Malpighian tubule fluid secretion in Rhodnius prolixus. J Insect Physiol. 2013; 59:1179-85.
  • [11]Gonzalez R, Orchard I. Characterization of neuropeptide F-like immunoreactivity in the blood-feeding hemipteran, Rhodnius prolixus. Peptides. 2008; 29:545-58.
  • [12]Sevala VL, Sevala VM, Davey KG, Loughton BG. A FMRFamide-like peptide is associated with the myotropic ovulation hormone in Rhodnius prolixus. Arch Insect Biochem Physiol. 1992; 20:193-203.
  • [13]Ons S, Sterkel M, Diambra L, Urlaub H, Rivera‐Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. Insect Mol Biol. 2011; 20:29-44.
  • [14]Ons S, Richter F, Urlaub H, Pomar RR. The neuropeptidome of Rhodnius prolixus brain. Proteomics. 2009; 9:788-92.
  • [15]Lazzari CR. Orientation towards hosts in haematophagous Insects: an integrative perspective. In: Advances in Insect Physiology, Vol 37. Elsevier Academic Press Inc, San Diego; 2009: p.1-+. Advances in Insect Physiology
  • [16]Guerenstein PG, Lazzari CR. Host-seeking: How triatomines acquire and make use of information to find blood. Acta Trop. 2009; 110:148-58.
  • [17]Manrique G, Lorenzo MG. The sexual behaviour of Chagas' disease vectors: chemical signals mediating communication between male and female Triatomine bugs. Psyche J Entomol. 2012; 2012:1-8.
  • [18]Latorre-Estivalis JM, Lazzari CR, Guarneri AA, Mota T, Omondi BA, Lorenzo MG. Genetic basis of triatomine behaviour: lessons from available insect genomes. Mem Inst Oswaldo Cruz. 2013; 108:63-73.
  • [19]Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol. 2011; 57:840-50.
  • [20]Nolan T, Hands R, Bustin S. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006; 1:1559-82.
  • [21]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al.. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol Evol. 2002; 3:1-12.
  • [22]Shen G-M, Jiang H-B, Wang X-N, Wang J-J. Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae). BMC Mol Biol. 2010; 11:76. BioMed Central Full Text
  • [23]Biessmann H, Andronopoulou E, Biessmann MR, Douris V, Dimitratos SD, Eliopoulos E et al.. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One. 2010; 5: Article ID e9471
  • [24]Li K-M, Ren L-Y, Zhang Y-J, Wu K-M, Guo Y-Y. Knockdown of Microplitis mediator odorant receptor involved in the sensitive detection of two chemicals. J Chem Ecol. 2012; 38:287-94.
  • [25]Dong X, Zhong G, Hu M, Yi X, Zhao H, Wang H. Molecular cloning and functional identification of an insect odorant receptor gene in Spodoptera litura (F.) for the botanical insecticide rhodojaponin III. J Insect Physiol. 2013; 59:26-32.
  • [26]Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10:57-63.
  • [27]Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Dimon MT, Marinotti O et al.. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti. BMC Genomics. 2011; 12:82. BioMed Central Full Text
  • [28]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M et al.. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320:1344-9.
  • [29]Martin F, Riveron J, Alcorta E. Environmental temperature modulates olfactory reception in Drosophila melanogaster. J Insect Physiol. 2011; 57:1631-42.
  • [30]Radonić A, Thulke S, Mackay I, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004; 313:856-62.
  • [31]Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005; 6:279-84.
  • [32]Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M et al.. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009; 55:611-22.
  • [33]Ling D, Salvaterra P. Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS One. 2011; 6:1-8.
  • [34]Hornáková D, Matousková P, Kindl J, Valterová I, Pichová I. Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal Biochem. 2010; 397:118-20.
  • [35]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29: Article ID e45
  • [36]Pfaffl MW. Quantification strategies in real-time PCR. AZ of quantitative PCR. 2004; 1:89-113.
  • [37]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) Method. Methods. 2001; 25:402-8.
  • [38]Paim R, Pereira M, Di Ponzio R, Rodrigues J, Guarneri A, Gontijo N et al.. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Res Notes. 2012; 5:128. BioMed Central Full Text
  • [39]Selvey S, Thompson E, Matthaei K, Lea RA, Irving MG, Griffiths LR. β-Actin—an unsuitable internal control for RT-PCR. Mol Cell Probes. 2001; 15:307-11.
  • [40]Lee PD, Sladek R, Greenwood CM, Hudson TJ. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res. 2002; 12:292-7.
  • [41]Ohl F, Jung M, Xu C, Stephan C, Rabien A, Burkhardt M et al.. Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization? J Mol Med. 2005; 83:1014-24.
  • [42]Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005; 139:5-17.
  • [43]Suzuki T, Higgins P, Crawford D. Control selection for RNA quantitation. Biotechniques. 2000; 29:332-7.
  • [44]Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G et al.. Housekeeping genes as internal standards: use and limits. J Biotech. 1999; 75:291-5.
  • [45]Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol. 2009; 10:11. BioMed Central Full Text
  • [46]Oliveira JG, Prados RZ, Guedes ACM, Ferreira PC, Kroon EG. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase is inappropriate as internal control in comparative studies between skin tissue and cultured skin fibroblasts using Northern blot analysis. Arch Dermatol Res. 1999; 291:659-61.
  • [47]Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza A, Meyer-Fernandes J, Braz G et al.. Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Mol Biol. 2011; 20:713-22.
  • [48]Carey AF, Carlson JR. Insect olfaction from model systems to disease control. Proc Natl Acad Sci U S A. 2011; 108:12987-95.
  • [49]Hallem EA, Nicole Fox A, Zwiebel LJ, Carlson JR. Olfaction: mosquito receptor for human-sweat odorant. Nature. 2004; 427:212-3.
  • [50]Carey A, Wang G, Su C-Y, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010; 464:66-71.
  • [51]Badsha F, Kain P, Prabhakar S, Sundaram S, Padinjat R, Rodrigues V et al.. Mutants in Drosophila TRPC channels reduce olfactory sensitivity to carbon dioxide. PLoS One. 2012; 7:1-11.
  • [52]Bohbot J, Vogt RG. Antennal expressed genes of the yellow fever mosquito (Aedes aegypti L.); characterization of odorant-binding protein 10 and takeout. Insect Biochem Mol Biol. 2005; 35:961-79.
  • [53]Iatrou K, Biessmann H. Sex-biased expression of odorant receptors in antennae and palps of the African malaria vector Anopheles gambiae. Insect Biochem Mol Biol. 2008; 38:268-74.
  • [54]Vásquez G, Fischer P, Grozinger C, Gould F. Differential expression of odorant receptor genes involved in the sexual isolation of two Heliothis moths. Insect Mol Biol. 2011; 20:115-24.
  • [55]Patch HM, Velarde RA, Walden KK, Robertson HM. A candidate pheromone receptor and two odorant receptors of the hawkmoth Manduca sexta. Chem Senses. 2009; 34:305-16.
  • [56]Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, Robertson HM. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci U S A. 2007; 104:14383-8.
  • [57]Robertson H, Wanner K. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006; 16:1395-403.
  • [58]Scharf ME, Zhou X, Schwinghammer MA. Application of RNA interference in functional genomics studies of a social insect. Methods Mol Biol. 2008; 442:205-29.
  • [59]Lord J, Hartzer K, Toutges M, Oppert B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J Microbiol Methods. 2010; 80:219-21.
  • [60]Bieke S, Dirk CG, Karen G, Marleen B, Luc JP, Frans JJ. Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci. 2008; 8:1-10.
  • [61]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-402.
  • [62]Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000; 132:365-86.
  • [63]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-10.
  • [64]Staden R, Beal KF, Bonfield JK. The Staden package, 1998. Methods Mol Biol. 2000; 132:115-30.
  • [65]Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64:5245-50.
  • [66]Turner C, Davy M, MacDiarmid R, Plummer K, Birch N, Newcomb R. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol. 2006; 15:383-91.
  • [67]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008; 18:1509-17.
  • [68]Sinha DK, Smith CM. Selection of reference genes for expression analysis in Diuraphis noxia (Hemiptera: Aphididae) fed on resistant and susceptible wheat plants. Sci Rep. 2014; 4:1-6.
  文献评价指标  
  下载次数:2次 浏览次数:2次