期刊论文详细信息
Reproductive Biology and Endocrinology
Mono-ethylhexyl phthalate stimulates prostaglandin secretion in human placental macrophages and THP-1 cells
Rita Loch-Caruso1  David M Aronoff2  Lauren M Tetz2 
[1] Environmental Health Sciences, University of Michigan, Ann Arbor 48109, MI, USA;Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville 37232, TN, USA
关键词: Mono-ethylhexyl phthalate;    Prostaglandin E2;    Cyclooxygenase-2;    Phthalates;    Macrophage;    Placenta;   
Others  :  1216402
DOI  :  10.1186/s12958-015-0046-8
 received in 2015-02-10, accepted in 2015-05-13,  发布年份 2015
PDF
【 摘 要 】

Background

Diethylhexyl phthalate (DEHP) is widely used as a plasticizer in polyvinyl chloride products. DEHP exposure, which is widespread in the US, increases preterm birth risk; however, the mechanisms driving this relationship are unclear. Because cyclooxygenase-2 (COX-2) dependent prostaglandin synthesis is implicated in preterm birth, we evaluated effects of mono-2-ethylhexyl phthalate (MEHP), the active metabolite of DEHP, on prostaglandin E2 (PGE2) synthesis and COX expression in human placental macrophages (PM). In addition, responses in PM were compared to those in a human macrophage-like cell line, THP-1.

Methods

PM and THP-1 cells were treated for 2, 4, 8, or 24 h with MEHP concentrations ranging from 10 to 180 micromolar. PGE2 concentrations were assessed in culture medium using ELISA, and COX expression was determined by western blot.

Results

Treatment of PM and THP-1 cells with 180 micromolar MEHP for 24 h significantly increased PGE2 release. Co-treatment of PMs or THP-1 cells with 180 micromolar MEHP and the non-selective COX inhibitor indomethacin reduced MEHP-stimulated PGE2 production. Similarly, co-treatment of PM and THP-1 cells with the COX-2 selective inhibitor NS-398 resulted in a significant decrease in PGE2, suggesting that MEHP-stimulated PGE2 is dependent specifically on increased COX-2 expression. Western blot analysis revealed a significant increase in COX-2 expression in PM and THP-1 cells treated with 180 micromolar MEHP, and no changes in COX-1 expression, supporting the role of COX-2 in MEHP-stimulated PGE2 synthesis.

Conclusions

The findings from this study are the first to demonstrate phthalate-stimulated PGE2 synthesis in PM and warrant future studies into COX-2-dependent prostaglandin synthesis as a mechanism of toxicant-associated preterm birth.

【 授权许可】

   
2015 Tetz et al.

【 预 览 】
附件列表
Files Size Format View
20150630103536504.pdf 950KB PDF download
Fig. 3. 33KB Image download
Fig. 2. 31KB Image download
Fig. 1. 54KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

【 参考文献 】
  • [1]Callaghan WM, MacDorman MF, Rasmussen SA, Qin C, Lackritz EM. The contribution of preterm birth to infant mortality rates in the United States. Pediatrics. 2006; 118(4):1566-73.
  • [2]Goldenberg RL, Rouse DJ. Prevention of premature birth. N Engl J Med. 1998; 339(5):313-20.
  • [3]Romero R, Chaiworapongsa T, Espinoza J. Micronutrients and intrauterine infection, preterm birth and the fetal inflammatory response syndrome. J Nutr. 2003; 133(5):1668S-73.
  • [4]Hamilton BE, Martin JA, Ventura SJ, Sutton PD, Menacker F. Births: preliminary data for 2004. Statistics. National Vital Statistics Reports, Hyattsville, MD; 2005.
  • [5]Behrman RE, Butler AS. Preterm birth: causes, consequences, and prevention. National Academies Press, Washington, DC; 2007.
  • [6]Longnecker MP, Klebanoff MA, Zhou H, Brock JW. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet. 2001; 358(9276):110-4.
  • [7]Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014; 168(1):61-7.
  • [8]Luo YJ, Wen XZ, Ding P, He YH, Xie CB, Liu T et al.. Interaction between maternal passive smoking during pregnancy and CYP1A1 and GSTs polymorphisms on spontaneous preterm delivery. PLoS One. 2012; 7(11):e49155.
  • [9]van den Hooven EH, Pierik FH, de Kluizenaar Y, Willemsen SP, Hofman A, van Ratingen SW et al.. Air pollution exposure during pregnancy, ultrasound measures of fetal growth, and adverse birth outcomes: a prospective cohort study. Environ Health Perspect. 2012; 120(1):150-6.
  • [10]Ferguson KK, Loch-Caruso R, Meeker JD. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999–2006. Environ Res. 2011; 111(5):718-26.
  • [11]Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F et al.. In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ Health Perspect. 2003; 111(14):1783-5.
  • [12]Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS et al.. Urinary phthalate metabolites in relation to preterm birth in Mexico City. Environ Health Perspect. 2009; 117(10):1587-92.
  • [13]Toft G, Jonsson BA, Lindh CH, Jensen TK, Hjollund NH, Vested A et al.. Association between pregnancy loss and urinary phthalate levels around the time of conception. Environ Health Perspect. 2012; 120(3):458-63.
  • [14]Zhang Y, Lin L, Cao Y, Chen B, Zheng L, Ge RS. Phthalate levels and low birth weight: a nested case–control study of Chinese newborns. J Pediatr. 2009; 155(4):500-4.
  • [15]Mose T, Mortensen GK, Hedegaard M, Knudsen LE. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol. 2007; 23(1):83-91.
  • [16]Wittassek M, Angerer J, Kolossa-Gehring M, Schafer SD, Klockenbusch W, Dobler L et al.. Fetal exposure to phthalates–a pilot study. Int J Hyg Environ Health. 2009; 212(5):492-8.
  • [17]Silva MJ, Reidy JA, Herbert AR, Preau JL, Needham LL, Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bull Environ Contam Toxicol. 2004; 72(6):1226-31.
  • [18]Tetz LM, Cheng AA, Korte CS, Giese RW, Wang P, Harris C et al.. Mono-2-ethylhexyl phthalate induces oxidative stress responses in human placental cells in vitro. Toxicol Appl Pharmacol. 2013; 268(1):47-54.
  • [19]Timmons BC, Reese J, Socrate S, Ehinger N, Paria BC, Milne GL et al.. Prostaglandins are essential for cervical ripening in LPS-mediated preterm birth but not term or antiprogestin-driven preterm ripening. Endocrinology. 2014; 155(1):287-98.
  • [20]Wikland M, Lindblom B, Wiqvist N. Myometrial response to prostaglandins during labor. Gynecol Obstet Invest. 1984; 17(3):131-8.
  • [21]Lee PR, Kim SR, Jung BK, Kim KR, Chung JY, Won HS et al.. Therapeutic effect of cyclo-oxygenase inhibitors with different isoform selectivity in lipopolysaccharide-induced preterm birth in mice. Am J Obstet Gynecol. 2003; 189(1):261-6.
  • [22]Gross G, Imamura T, Vogt SK, Wozniak DF, Nelson DM, Sadovsky Y et al.. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse. Am J Physiol Regul Integr Comp Physiol. 2000; 278(6):R1415-23.
  • [23]Lee SE, Romero R, Park IS, Seong HS, Park CW, Yoon BH. Amniotic fluid prostaglandin concentrations increase before the onset of spontaneous labor at term. J Matern Fetal Neonatal Med. 2008; 21(2):89-94.
  • [24]Mazor M, Wiznitzer A, Maymon E, Leiberman JR, Cohen A. Changes in amniotic fluid concentrations of prostaglandins E2 and F2 alpha in women with preterm labor. Isr J Med Sci. 1990; 26(8):425-8.
  • [25]Wetzka B, Clark DE, Charnock-Jones DS, Zahradnik HP, Smith SK. PGE2 and TXA2 production by isolated macrophages from human placenta. Adv Exp Med Biol. 1997; 433:403-6.
  • [26]Hanna N, Bonifacio L, Weinberger B, Reddy P, Murphy S, Romero R et al.. Evidence for interleukin-10-mediated inhibition of cyclo- oxygenase-2 expression and prostaglandin production in preterm human placenta. Am J Reprod Immunol. 2006; 55(1):19-27.
  • [27]Wetzka B, Nusing R, Charnock-Jones DS, Schafer W, Zahradnik HP, Smith SK. Cyclooxygenase-1 and −2 in human placenta and placental bed after normal and pre-eclamptic pregnancies. Hum Reprod. 1997; 12(10):2313-20.
  • [28]Mizuno M, Aoki K, Kimbara T. Functions of macrophages in human decidual tissue in early pregnancy. Am J Reprod Immunol. 1994; 31(4):180-8.
  • [29]Adeleye TA, Elder MG, Sullivan MH. Preparation of a population of macrophages from human third trimester decidua. Hum Reprod. 1996; 11(2):451-6.
  • [30]Jepsen KF, Abildtrup A, Larsen ST. Monophthalates promote IL-6 and IL-8 production in the human epithelial cell line A549. Toxicol in Vitro. 2004; 18(3):265-9.
  • [31]Bolling AK, Ovrevik J, Samuelsen JT, Holme JA, Rakkestad KE, Mathisen GH et al.. Mono-2-ethylhexylphthalate (MEHP) induces TNF-alpha release and macrophage differentiation through different signalling pathways in RAW264.7 cells. Toxicol Lett. 2012; 209(1):43-50.
  • [32]Vetrano AM, Laskin DL, Archer F, Syed K, Gray JP, Laskin JD et al.. Inflammatory effects of phthalates in neonatal neutrophils. Pediatr Res. 2010; 68(2):134-9.
  • [33]Soares EM, Mason KL, Rogers LM, Serezani CH, Faccioli LH, Aronoff DM. Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes. J Immunol. 2013; 190(4):1614-22.
  • [34]Rogers LM, Thelen T, Fordyce K, Bourdonnay E, Lewis C, Yu H et al.. EP4 and EP2 receptor activation of protein kinase A by prostaglandin E2 impairs macrophage phagocytosis of Clostridium sordellii. Am J Reprod Immunol. 2014; 71(1):34-43.
  • [35]Mason KL, Rogers LM, Soares EM, Bani-Hashemi T, Erb Downward J, Agnew D et al.. Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2. J Immunol. 2013; 191(5):2457-65.
  • [36]Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci. 2010; 17(3):209-18.
  • [37]Lin L, Zheng LX, Gu YP, Wang JY, Zhang YH, Song WM. Levels of environmental endocrine disruptors in umbilical cord blood and maternal blood of low-birth-weight infants. Zhonghua Yu Fang Yi Xue Za Zhi. 2008; 42(3):177-80.
  • [38]Ledwith BJ, Pauley CJ, Wagner LK, Rokos CL, Alberts DW, Manam S. Induction of cyclooxygenase-2 expression by peroxisome proliferators and non-tetradecanoylphorbol 12,13-myristate-type tumor promoters in immortalized mouse liver cells. J Biol Chem. 1997; 272(6):3707-14.
  • [39]Onorato TM, Brown PW, Morris PL. Mono-(2-ethylhexyl) phthalate increases spermatocyte mitochondrial peroxiredoxin 3 and cyclooxygenase 2. J Androl. 2008; 29(3):293-303.
  • [40]Rakkestad KE, Holme JA, Paulsen RE, Schwarze PE, Becher R. Mono (2-ethylhexyl) phthalate induces both pro- and anti-inflammatory responses in rat alveolar macrophages through crosstalk between p38, the lipoxygenase pathway and PPARalpha. Inhal Toxicol. 2010; 22(2):140-50.
  • [41]Xu Y, Agrawal S, Cook TJ, Knipp GT. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta. Placenta. 2008; 29(11):962-9.
  • [42]Desvergne B, Feige JN, Casals-Casas C. PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol. 2009; 304(1–2):43-8.
  • [43]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L et al.. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007; 447(7148):1116-20.
  文献评价指标  
  下载次数:43次 浏览次数:15次