Radiation Oncology | |
Range modulation in proton therapy planning: a simple method for mitigating effects of increased relative biological effectiveness at the end-of-range of clinical proton beams | |
Mark R Wolanski1  Kevin P McMullen1  Indra J Das1  Chee-Wei Cheng1  Marc Mendonca1  Ted Hoene1  Peter AS Johnstone1  Mark W McDonald1  Jeffrey C Buchsbaum1  | |
[1] IU Health Proton Therapy Center, Bloomington, IN, USA | |
关键词: Treatment planning; Patient safety; Relative biological effectiveness (RBE); Proton dosimetry; Toxicity; Bragg peak; Proton therapy; | |
Others : 815172 DOI : 10.1186/1748-717X-9-2 |
|
received in 2013-07-15, accepted in 2013-12-23, 发布年份 2014 | |
【 摘 要 】
Background
The increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo. For purposes of treatment planning, disallowing the distal SOBP to fall within vulnerable tissues hampers sparing to the extent possible with proton beam therapy (PBT). We propose the distal RBE uncertainty may be straightforwardly mitigated with a technique we call “range modulation”. With range modulation, the distal falloff is smeared, reducing both the dose and average RBE over the terminal few millimeters of the SOBP.
Methods
One patient plan was selected to serve as an example for direct comparison of image-guided radiotherapy plans using non-range modulation PBT (NRMPBT), and range-modulation PBT (RMPBT). An additional plan using RMPBT was created to represent a re-treatment scenario (RMPBTrt) using a vertex beam. Planning statistics regarding dose, volume of the planning targets, and color images of the plans are shown.
Results
The three plans generated for this patient reveal that in all cases dosimetric and device manufacturing advantages are able to be achieved using RMPBT. Organ at risk (OAR) doses to critical structures such as the cochleae, optic apparatus, hypothalamus, and temporal lobes can be selectively spared using this method. Concerns about the location of the RBE that did significantly impact beam selection and treatment planning no longer have the same impact on the process, allowing these structures to be spared dose and subsequent associated issues.
Conclusions
This present study has illustrated that RMPBT can improve OAR sparing while giving equivalent coverage to target volumes relative to traditional PBT methods while avoiding the increased RBE at the end of the beam. It has proven easy to design and implement and robust in our planning process. The method underscores the need to optimize treatment plans in PBT for both traditional energy dose in gray (Gy) and biologic dose (RBE).
【 授权许可】
2014 Buchsbaum et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140710055949512.pdf | 3005KB | download | |
Figure 6. | 101KB | Image | download |
Figure 5. | 107KB | Image | download |
Figure 4. | 99KB | Image | download |
Figure 3. | 89KB | Image | download |
Figure 2. | 87KB | Image | download |
Figure 1. | 77KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Hug EB, Muenter MW, Archambeau JO, DeVries A, Liwnicz B, Loredo LN, Grove RI, Slater JD: Conformal proton radiation therapy for pediatric low-grade astrocytomas. Strahlenther Onkol 2002, 178:10-17.
- [2]Chung C, Keating T, Yock T, Tarbell N: Second malignancy risk in patients treated with proton therapy versus conventional photon therapy. In Int J Radiat Oncol Biol Phys 2006, 72:S8.
- [3]Zhang R, Howell RM, Giebeler A, Taddei PJ, Mahajan A, Newhauser WD: Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys Med Biol 2013, 58:807-823.
- [4]Taddei PJ, Mirkovic D, Fontenot JD, Giebeler A, Zheng Y, Kornguth D, Mohan R, Newhauser WD: Stray radiation dose and second cancer risk for a pediatric patient receiving craniospinal irradiation with proton beams. Phys Med Biol 2009, 54:2259-2275.
- [5]Brodin NP, Munck Af Rosenschold P, Aznar MC, Kiil-Berthelsen A, Vogelius IR, Nilsson P, Lannering B, Bjork-Eriksson T: Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol 2011, 50:806-816.
- [6]Chung CS, Yock TI, Nelson K, Xu Y, Keating NL, Tarbell NJ: Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys 2013, 87:46-52.
- [7]Paganetti H, Olko P, Kobus H, Becker R, Schmitz T, Waligorski MP, Filges D, Muller-Gartner HW: Calculation of relative biological effectiveness for proton beams using biological weighting functions. Int J Radiat Oncol Biol Phys 1997, 37:719-729.
- [8]Britten RA, Nazaryan V, Davis LK, Klein SB, Nichiporov D, Mendonca MS, Wolanski M, Nie X, George J, Keppel C: Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Radiat Res 2013, 179:21-28.
- [9]Paganetti H, Niemierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, Suit HD: Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys 2002, 53:407-421.
- [10]Gueulette J, Slabbert JP, Bohm L, De Coster BM, Rosier JF, Octave-Prignot M, Ruifrok A, Schreuder AN, Wambersie A, Scalliet P, Jones DT: Proton RBE for early intestinal tolerance in mice after fractionated irradiation. Radiother Oncol 2001, 61:177-184.
- [11]Kase Y, Himukai T, Nagano A, Tameshige Y, Minohara S, Matsufuji N, Mizoe J, Fossati P, Hasegawa A, Kanai T: Preliminary calculation of RBE-weighted dose distribution for cerebral radionecrosis in carbon-ion treatment planning. J Radiat Res 2011, 52:789-796.
- [12]Blomquist E, Russell KR, Stenerlow B, Montelius A, Grusell E, Carlsson J: Relative biological effectiveness of intermediate energy protons. Comparisons with 60Co gamma-radiation using two cell lines. Radiother Oncol 1993, 28:44-51.
- [13]Paganetti H: Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2003, 2:413-426.
- [14]Jones DTL, Suit HD, Akine Y, Goitein G, Goitein M, Kanematsu N, Maughan RL, Tatsuzaki H, Tsujii H, Vatnitsky SM: Prescribing, recording, and reporting proton-beam therapy. J ICRU 2007, 7(No. 2):210. ISBN 1473-6691
- [15]Carabe A, Espana S, Grassberger C, Paganetti H: Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol 2013, 58:2103-2117.
- [16]Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H: Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol 2012, 57:1159-1172.
- [17]Combs SE, Zipp L, Rieken S, Habermehl D, Brons S, Winter M, Haberer T, Debus J, Weber KJ: In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells. Radiat Oncol 2012, 7:9. BioMed Central Full Text
- [18]Nichiporov D, Solberg K, Hsi W, Wolanski M, Mascia A, Farr J, Schreuder A: Multichannel detectors for profile measurements in clinical proton fields. Med Phys 2007, 34:2683-2690.
- [19]Hua C, Wu S, Chemaitilly W, Lukose RC, Merchant TE: Predicting the probability of abnormal stimulated growth hormone response in children after radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys 2012, 84:990-995.