期刊论文详细信息
Molecular Pain
CXCR4 chemokine receptor signaling mediates pain in diabetic neuropathy
Richard J Miller2  Caroline Frietag2  Andrew Shum2  Dongjun Ren2  Belmadani Abdelhak2  Daniela Maria Menichella1 
[1] Department of Neurology, Robert Lurie Medical Research Center, Northwestern University, Lurie 8-123, 303 E. Superior St, Chicago, IL, USA;Department of Molecular Pharmacology, Northwestern University, Chicago, IL, USA
关键词: DRG neurons;    Painful diabetic neuropathy;    Neuropathic pain;    Chemokine;   
Others  :  861311
DOI  :  10.1186/1744-8069-10-42
 received in 2013-06-14, accepted in 2014-06-18,  发布年份 2014
PDF
【 摘 要 】

Background

Painful Diabetic Neuropathy (PDN) is a debilitating syndrome present in a quarter of diabetic patients that has a substantial impact on their quality of life. Despite this significant prevalence and impact, current therapies for PDN are only partially effective. Moreover, the cellular mechanisms underlying PDN are not well understood. Neuropathic pain is caused by a variety of phenomena including sustained excitability in sensory neurons that reduces the pain threshold so that pain is produced in the absence of appropriate stimuli. Chemokine signaling has been implicated in the pathogenesis of neuropathic pain in a variety of animal models. We therefore tested the hypothesis that chemokine signaling mediates DRG neuronal hyperexcitability in association with PDN.

Results

We demonstrated that intraperitoneal administration of the specific CXCR4 antagonist AMD3100 reversed PDN in two animal models of type II diabetes. Furthermore DRG sensory neurons acutely isolated from diabetic mice displayed enhanced SDF-1 induced calcium responses. Moreover, we demonstrated that CXCR4 receptors are expressed by a subset of DRG sensory neurons. Finally, we observed numerous CXCR4 expressing inflammatory cells infiltrating into the DRG of diabetic mice.

Conclusions

These data suggest that CXCR4/SDF-1 signaling mediates enhanced calcium influx and excitability in DRG neurons responsible for PDN. Simultaneously, CXCR4/SDF-1 signaling may coordinate inflammation in diabetic DRG that could contribute to the development of pain in diabetes. Therefore, targeting CXCR4 chemokine receptors may represent a novel intervention for treating PDN.

【 授权许可】

   
2014 Menichella et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725000410689.pdf 2300KB PDF download
320KB Image download
263KB Image download
178KB Image download
44KB Image download
59KB Image download
【 图 表 】

【 参考文献 】
  • [1]American Diabetes A: Diagnosis and classification of diabetes mellitus. Diabetes Care 2011, 34(Suppl 1):S62-S69.
  • [2]Dyck PJ, Kratz KM, Lehman KA, Karnes JL, Melton LJ 3rd, O'Brien PC, Litchy WJ, Windebank AJ, Smith BE, Low PA: The Rochester Diabetic Neuropathy Study: design, criteria for types of neuropathy, selection bias, and reproducibility of neuropathic tests. Neurology 1991, 41(6):799-807.
  • [3]Spallone V, Lacerenza M, Rossi A, Sicuteri R, Marchettini P: Painful diabetic polyneuropathy: approach to diagnosis and management. Clin J Pain 2012, 28(8):726-743.
  • [4]DiBonaventura M, Cappelleri JC, Joshi AV: longitudinal assessment of painful diabetic peripheral neuropathy on health status, productivity, and health care utilization and cost. Pain Med 2011, 12(1):118-126.
  • [5]Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, Feldman E, Iverson DJ, Perkins B, Russell JW, Zochodne DW: Evidence-based guideline: Treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 2011, 76(20):1758-1765.
  • [6]Quilici S, Chancellor J, Lothgren M, Simon D, Said G, Le TK, Garcia-Cebrian A, Monz B: Meta-analysis of duloxetine vs. pregabalin and gabapentin in the treatment of diabetic peripheral neuropathic pain. BMC Neurol 2009, 9:6.
  • [7]Latremoliere A, Woolf CJ: Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009, 10(9):895-926.
  • [8]von Hehn CA, Baron R, Woolf CJ: Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012, 73(4):638-652.
  • [9]Zhang JM, Song XJ, LaMotte RH: Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 1999, 82(6):3359-3366.
  • [10]White FA, Bhangoo SK, Miller RJ: Chemokines: integrators of pain and inflammation. Nat Rev Drug Discov 2005, 4(10):834-844.
  • [11]Miller RJ, Jung H, Bhangoo SK, White FA: Cytokine and chemokine regulation of sensory neuron function. Handbook Exp Pharmacol 2009, 194:417-449.
  • [12]Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006, 124(6):1269-1282.
  • [13]Abbadie C: Chemokines, chemokine receptors and pain. Trends Immunol 2005, 26(10):529-534.
  • [14]Uceyler N, Schafers M, Sommer C: Mode of action of cytokines on nociceptive neurons. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 2009, 196(1):67-78.
  • [15]Zlotnik A, Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity 2000, 12(2):121-127.
  • [16]Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A: Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997, 6(3):315-325.
  • [17]Ambrosini E, Aloisi F: Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 2004, 29(5):1017-1038.
  • [18]White FA, Jung H, Miller RJ: Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 2007, 104(51):20151-20158.
  • [19]Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FA: Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain 2009, 5:48.
  • [20]Bhangoo SK, Ren D, Miller RJ, Chan DM, Ripsch MS, Weiss C, McGinnis C, White FA: CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun 2007, 21(5):581-591.
  • [21]Wilson NM, Jung H, Ripsch MS, Miller RJ, White FA: CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain Behav Immun 2011, 25(3):565-573.
  • [22]Hur J, Sullivan KA, Pande M, Hong Y, Sima AA, Jagadish HV, Kretzler M, Feldman EL: The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain 2011, 134(Pt 11):3222-3235.
  • [23]Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, Malfait AM: CCR2 chemokine receptor signaling mediates pain in experimental osteoarthritis. Proc Natl Acad Sci U S A 2012, 109(50):20602-20607.
  • [24]Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM: Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst 2007, 12(4):250-261.
  • [25]Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ: Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci 2001, 21(14):5027-5035.
  • [26]Woolf CJ, Ma Q: Nociceptors–noxious stimulus detectors. Neuron 2007, 55(3):353-364.
  • [27]Snider WD, McMahon SB: Tackling pain at the source: new ideas about nociceptors. Neuron 1998, 20(4):629-632.
  • [28]Basbaum AI, Bautista DM, Scherrer G, Julius D: Cellular and molecular mechanisms of pain. Cell 2009, 139(2):267-284.
  • [29]Jung H, Bhangoo S, Banisadr G, Freitag C, Ren D, White FA, Miller RJ: Visualization of chemokine receptor activation in transgenic mice reveals peripheral activation of CCR2 receptors in states of neuropathic pain. J Neurosci 2009, 29(25):8051-8062.
  • [30]Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10(11):1361-1368.
  • [31]Marchand F, Perretti M, McMahon SB: Role of the immune system in chronic pain. Nat Rev Neurosci 2005, 6(7):521-532.
  • [32]Obrosova IG, Ilnytska O, Lyzogubov VV, Pavlov IA, Mashtalir N, Nadler JL, Drel VR: High-fat diet induced neuropathy of pre-diabetes and obesity: effects of "healthy" diet and aldose reductase inhibition. Diabetes 2007, 56(10):2598-2608.
  • [33]LaMotte CC: Lamina X of primate spinal cord: distribution of five neuropeptides and serotonin. Neuroscience 1988, 25(2):639-658.
  • [34]Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH: Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003, 89(3):1588-1602.
  • [35]Sun JH, Yang B, Donnelly DF, Ma C, LaMotte RH: MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J Neurophysiol 2006, 96(5):2189-2199.
  • [36]White FA, Sun J, Waters SM, Ma C, Ren D, Ripsch M, Steflik J, Cortright DN, Lamotte RH, Miller RJ: Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A 2005, 102(39):14092-14097.
  • [37]Zhang N, Inan S, Cowan A, Sun R, Wang JM, Rogers TJ, Caterina M, Oppenheim JJ: A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc Natl Acad Sci U S A 2005, 102(12):4536-4541.
  • [38]Jung H, Toth PT, White FA, Miller RJ: Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J Neurochem 2008, 104(1):254-263.
  • [39]Marmigere F, Ernfors P: Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 2007, 8(2):114-127.
  • [40]Breese NM, George AC, Pauers LE, Stucky CL: Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 2005, 115(1–2):37-49.
  • [41]Dirajlal S, Pauers LE, Stucky CL: Differential response properties of IB(4)-positive and -negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 2003, 89(1):513-524.
  • [42]Vincent AM, Callaghan BC, Smith AL, Feldman EL: Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurosci 2011, 7(10):573-583.
  • [43]Kampoli AM, Tousoulis D, Briasoulis A, Latsios G, Papageorgiou N, Stefanadis C: Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 2011, 17(37):4147-4158.
  • [44]Sjoholm A, Nystrom T: Endothelial inflammation in insulin resistance. Lancet 2005, 365(9459):610-612.
  • [45]Purwata TE: High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res 2011, 4:169-175.
  • [46]Uceyler N, Rogausch JP, Toyka KV, Sommer C: Differential expression of cytokines in painful and painless neuropathies. Neurology 2007, 69(1):42-49.
  • [47]Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A: Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 2009, 94(6):2157-2163.
  • [48]Galloway C, Chattopadhyay M: Increases in inflammatory mediators in DRG implicate in the pathogenesis of painful neuropathy in Type 2 diabetes. Cytokine 2013, 63(1):1-5.
  • [49]Sugimoto K, Yasujima M, Yagihashi S: Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 2008, 14(10):953-961.
  • [50]Ramasamy R, Yan SF, Schmidt AM: Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011, 1243:88-102.
  • [51]Ramasamy R, Yan SF, Schmidt AM: RAGE: therapeutic target and biomarker of the inflammatory response–the evidence mounts. J Leukoc Biol 2009, 86(3):505-512.
  • [52]Toth C, Martinez J, Zochodne DW: RAGE, diabetes, and the nervous system. Curr Mol Med 2007, 7(8):766-776.
  文献评价指标  
  下载次数:36次 浏览次数:2次