期刊论文详细信息
Retrovirology
HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial
Barbara Ensoli1  Enrico Garaci1,13  Mauro Magnani4  Paolo Monini1  Giovanni Di Perri1,10  Francesco Castelli8  Vito S Mercurio1,14  Massimo Galli1,15  Massimo Di Pietro9  Gioacchino Angarano3  Andrea Gori2  Guido Palamara1,12  Laura Sighinolfi5  Adriano Lazzarin7  Cristina Mussini6  Giovanni Paniccia1  Maria T Maggiorella1  Leonardo Sernicola1  Chiara Orlandi4  Angela Arancio1  Maria R Pavone Cossut1  Sonia Moretti1  Cecilia Sgadari1  Orietta Picconi1  Vittorio Francavilla1  Olimpia Longo1  Stefania Bellino1  Antonella Tripiciano1  Anna Casabianca4  Aurelio Cafaro1  Fabrizio Ensoli1,11 
[1] National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy;Division of Infectious Diseases, San Gerardo Hospital, Monza, Italy;Division of Infectious Diseases, University of Bari, Policlinic Hospital, Bari, Italy;Department of Biomolecular Science, University of Urbino, Urbino, Italy;Unit of Infectious Diseases, University Hospital of Ferrara, Ferrara, Italy;Division of Infectious Diseases, University Policlinic of Modena, Modena, Italy;Division of Infectious Diseases, S. Raffaele Hospital, Milan, Italy;Division of Tropical and Infectious Diseases, Spedali Civili, Brescia, Italy;Unit of Infectious Diseases, S.M. Annunziata Hospital, Florence, Italy;Clinic of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy;Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy;Department of Infectious Dermatology, San Gallicano Hospital, Rome, Italy;Istituto Superiore di Sanità, Rome, Italy, present address University of Tor Vergata, Rome 00173, Italy;Department of Infectious Diseases, S. Maria Goretti Hospital, Latina, Italy;Institute of Tropical and Infectious Diseases, L. Sacco Hospital, University of Milan, Milan, Italy
关键词: CD38+HLA-DR+/CD8+ T cells;    Proviral DNA;    Neutralization;    Antibodies;    HAART;    Vaccine;    Tat protein;    HIV-1;   
Others  :  1210153
DOI  :  10.1186/s12977-015-0151-y
 received in 2014-10-16, accepted in 2015-02-11,  发布年份 2015
PDF
【 摘 要 】

Background

The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 μg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks.

Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4+ T-cell number ≥200 cells/μL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease.

Results

The vaccine was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest frequency and durability in the Tat 30 μg groups (89%) particularly when given 3 times (92%). Vaccination promoted a durable and significant restoration of T, B, natural killer (NK) cells, and CD4+ and CD8+ central memory subsets. Moreover, a significant reduction of blood proviral DNA was seen after week 72, particularly under PI-based regimens and with Tat 30 μg given 3 times (30 μg, 3x), reaching a predicted 70% decay after 3 years from vaccination with a half-life of 88 weeks. This decay was significantly associated with anti-Tat IgM and IgG Abs and neutralization of Tat-mediated entry of oligomeric Env in dendritic cells, which predicted HIV-1 DNA decay. Finally, the 30 μg, 3x group was the only one showing significant increases of NK cells and CD38+HLA-DR+/CD8+ T cells, a phenotype associated with increased killing activity in elite controllers.

Conclusions

Anti-Tat immune responses are needed to restore immune homeostasis and effective anti-viral responses capable of attacking the virus reservoir. Thus, Tat immunization represents a promising pathogenesis-driven intervention to intensify HAART efficacy.

【 授权许可】

   
2015 Ensoli et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150602145959217.pdf 2271KB PDF download
Figure 14. 17KB Image download
Figure 13. 32KB Image download
Figure 12. 37KB Image download
Figure 11. 43KB Image download
Figure 10. 60KB Image download
Figure 9. 59KB Image download
Figure 8. 45KB Image download
Figure 7. 36KB Image download
Figure 6. 41KB Image download
Figure 5. 75KB Image download
Figure 4. 63KB Image download
Figure 3. 41KB Image download
Figure 2. 57KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013; 254:326-42.
  • [2]Tsiara CG, Nikolopoulos GK, Bagos PG, Goujard C, Katzenstein TL, Minga AK et al.. Impact of HIV type 1 DNA levels on spontaneous disease progression: a meta-analysis. AIDS Res Hum Retroviruses. 2012; 28:366-73.
  • [3]Deeks SG, Phillips AN. HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ. 2009; 338:a3172.
  • [4]Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 2008; 214:231-41.
  • [5]Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res. 2008; 6:388-400.
  • [6]Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R et al.. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature. 2011; 477:95-8.
  • [7]Kostrikis LG, Touloumi G, Karanicolas R, Pantazis N, Anastassopoulou C, Karafoulidou A et al.. Quantitation of human immunodeficiency virus type 1 DNA forms with the second template switch in peripheral blood cells predicts disease progression independently of plasma RNA load. J Virol. 2002; 76:10099-108.
  • [8]Nicastri E, Palmisano L, Sarmati L, D’ettorre G, Parisi S, Andreotti M et al.. HIV-1 residual viremia and proviral DNA in patients with suppressed plasma viral load (<400 HIV-RNA cp/mL) during differential antiretroviral regimens. Curr HIV Res. 2008; 6:261-6.
  • [9]Katlama C, Deeks SG, Autran B, Martinez-Picado J, van Lunzen J, Rouzioux C et al.. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet. 2013; 381:2109-17.
  • [10]Drechsler H, Powderly WG. Switching effective antiretroviral therapy: a review. Clin Infect Dis. 2002; 35:1219-30.
  • [11]McKinnon JE, Mellors JW, Swindells S. Simplification strategies to reduce antiretroviral drug exposure: progress and prospects. Antivir Ther. 2009; 14:1-12.
  • [12]Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infection. Lancet. 2010; 376:49-62.
  • [13]Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005; 122:169-82.
  • [14]Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature. 1990; 345:84-6.
  • [15]Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA et al.. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol. 1993; 67:277-87.
  • [16]Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombini S, Raffeld M et al.. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature. 1994; 371:674-680.
  • [17]Chang HC, Samaniego F, Nair BC, Buonaguro L, Ensoli B. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS. 1997; 11:1421-31.
  • [18]Rayne F, Debaisieux S, Yezid H, Lin YL, Mettling C, Konate K et al.. Phosphatidylinositol-(4,5)-bisphosphate enables efficient secretion of HIV-1 Tat by infected T-cells. EMBO J. 2010; 29:1348-1362.
  • [19]Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N et al.. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science. 1997; 275:1481-1485.
  • [20]Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science. 2001; 293:1503-6.
  • [21]Mediouni S, Darque A, Baillat G, Ravaux I, Dhiver C, Tissot-Dupont H et al.. Antiretroviral therapy does not block the secretion of the human immunodeficiency virus Tat protein. Infect Disord Drug Targets. 2012; 12:81-6.
  • [22]Ensoli B, Bellino S, Tripiciano A, Longo O, Francavilla V, Marcotullio S et al.. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS ONE. 2010; 5:e13540.
  • [23]Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R et al.. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA. 2013; 110:13588-93.
  • [24]Fanales-Belasio E, Moretti S, Nappi F, Barillari G, Micheletti F, Cafaro A et al.. Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol. 2002; 168:197-206.
  • [25]Gavioli R, Gallerani E, Fortini C, Fabris M, Bottoni A, Canella A et al.. HIV-1 Tat protein modulates the generation of cytotoxic T cell epitopes by modifying proteasome composition and enzymatic activity. J Immunol. 2004; 173:3838-3843.
  • [26]Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P et al.. The therapeutic phase I trial of the recombinant native HIV-1 Tat protein. AIDS. 2008; 22:2207-2209.
  • [27]Ensoli B, Fiorelli V, Ensoli F, Lazzarin A, Visintini R, Narciso P et al.. The preventive phase I trial with the HIV-1 Tat-based vaccine. Vaccine. 2009; 28:371-378.
  • [28]Longo O, Tripiciano A, Fiorelli V, Bellino S, Scoglio A, Collacchi B et al.. Phase I therapeutic trial of the HIV-1 Tat protein and long term follow-up. Vaccine. 2009; 27:3306-3312.
  • [29]Huang L, Bosch I, Hofmann W, Sodroski J, Pardee AB. Tat protein induces human immunodeficiency virus type 1 (HIV-1) coreceptors and promotes infection with both macrophage-tropic and T-lymphotropic HIV-1 strains. J Virol. 1998; 72:8952-8960.
  • [30]Li CJ, Ueda Y, Shi B, Borodyansky L, Huang L, Li YZ et al.. Tat protein induces self-perpetuating permissivity for productive HIV-1 infection. Proc Natl Acad Sci USA. 1997; 94:8116-20.
  • [31]Nappi F, Chiozzini C, Bordignon V, Borsetti A, Bellino S, Cippitelli M et al.. Immobilized HIV-1 Tat protein promotes gene transfer via a transactivation-independent mechanism which requires binding of Tat to viral particles. J Gene Med. 2009; 11:955-965.
  • [32]Monini P, Cafaro A, Srivastava IK, Moretti S, Sharma VA, Andreini C et al.. HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE. 2012; 7:e48781.
  • [33]Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW et al.. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006; 80:9039-52.
  • [34]Cafaro A, Caputo A, Fracasso C, Maggiorella MT, Goletti D, Baroncelli S et al.. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med. 1999; 5:643-50.
  • [35]Cafaro A, Bellino S, Titti F, Maggiorella MT, Sernicola L, Wiseman RW et al.. Impact of viral dose and major histocompatibility complex class IB haplotype on viral outcome in Tat-vaccinated mauritian cynomolgus monkeys upon challenge with SHIV89.6P. J Virol. 2010; 84:8953-8958.
  • [36]Bachler BC, Humbert M, Palikuqi B, Siddappa NB, Lakhashe SK, Rasmussen RA et al.. Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol. 2013; 87:4403-16.
  • [37]Reiss P, de Wolf F, Kuiken CL, de Ronde A, Dekker J, Boucher CA et al.. Contribution of antibody response to recombinant HIV-1 gene-encoded products nef, rev, tat, and protease in predicting development of AIDS in HIV-1-infected individuals. J Acquir Immune Defic Syndr. 1991; 4:165-72.
  • [38]Re MC, Furlini G, Vignoli M, Ramazzotti E, Roderigo G, De Rosa V et al.. Effect of antibody to HIV-1 Tat protein on viral replication in vitro and progression of HIV-1 disease in vivo. J Acquir Immune Defic Syndr Hum Retrovirol. 1995; 10:408-16.
  • [39]Richardson MW, Mirchandani J, Duong J, Grimaldo S, Kocieda V, Hendel H et al.. Antibodies to Tat and Vpr in the GRIV cohort: differential association with maintenance of long-term non-progression status in HIV-1 infection. Biomed Pharmacother. 2003; 57:4-14.
  • [40]Rezza G, Fiorelli V, Dorrucci M, Ciccozzi M, Tripiciano A, Scoglio A et al.. The presence of anti-Tat antibodies is predictive of long-term nonprogression to AIDS or severe immunodeficiency: findings in a cohort of HIV-1 seroconverters. J Infect Dis. 2005; 191:1321-1324.
  • [41]Bellino S, Tripiciano A, Picconi O, Francavilla V, Longo O, Sgadari C et al.. The presence of anti-Tat antibodies in HIV-infected individuals is associated with containment of CD4+ T-cell decay and viral load, and with delay of disease progression: results of a 3-year cohort study. Retrovirology. 2014; 11:49. BioMed Central Full Text
  • [42]Fanales-Belasio E, Moretti S, Fiorelli V, Tripiciano A, Pavone Cossut MR, Scoglio A et al.. HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol. 2009; 182:2888-2897.
  • [43]Gavioli R, Cellini S, Castaldello A, Voltan R, Gallerani E, Gagliardoni F et al.. The Tat protein broadens T cell responses directed to the HIV-1 antigens Gag and Env: implications for the design of new vaccination strategies against AIDS. Vaccine. 2008; 26:727-737.
  • [44]Sforza F, Nicoli F, Gallerani E, Finessi V, Reali E, Cafaro A et al.. HIV-1 Tat affects the programming and functionality of human CD8+ T cells by modulating the expression of T-box transcription factors. AIDS. 2014; 28:1729-38.
  • [45]Nicoli F, Finessi V, Sicurella M, Rizzotto L, Gallerani E, Destro F et al.. The HIV-1 Tat protein induces the activation of CD8+ T cells and affects in vivo the magnitude and kinetics of antiviral responses. PLoS ONE. 2013; 8:e77746.
  • [46]Migueles SA, Weeks KA, Nou E, Berkley A, Rood JE, Osborne CM et al.. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J Virol. 2009; 83:11876-89.
  • [47]Sáez-Cirión A, Sinet M, Shin SY, Urrutia A, Versmisse P, Lacabaratz C et al.. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J Immunol. 2009; 182:7828-37.
  • [48]Shan L, Deng K, Shroff NS, Durand CM, Rabi SA, Yang HC et al.. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity. 2012; 36:491-501.
  • [49]Chiozzini C, Collacchi B, Nappi F, Bauer T, Arenaccio C, Tripiciano A et al.. Surface-bound Tat inhibits antigen-specific CD8+ T-cell activation in an integrin-dependent manner. AIDS. 2014; 28:2189-200.
  • [50]European Medicines Agency. Note for Guidance on Choice of Control Group in Clinical Trials (CPMP/ICH/364/96). January 2001.
  • [51]Kelley CF, Kitchen CM, Hunt PW, Rodriguez B, Hecht FM, Kitahata M et al.. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis. 2009; 48:787-94.
  • [52]Robbins GK, Spritzler JG, Chan ES, Asmuth DM, Gandhi RT, Rodriguez BA et al.. Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin Infect Dis. 2009; 48:350-61.
  • [53]Rallón N, Sempere-Ortells JM, Soriano V, Benito JM. Central memory CD4 T cells are associated with incomplete restoration of the CD4 T cell pool after treatment-induced long-term undetectable HIV viraemia. J Antimicrob Chemoter. 2013; 68:2616-25.
  • [54]Casazza JP, Betts MR, Picker LJ, Koup RA. Decay kinetics of human immunodeficiency virus-specific CD8+ T cells in peripheral blood after initiation of highly active antiretroviral therapy. J Virol. 2001; 75:6508-16.
  • [55]Serrano-Villar Serrano-Villar S, Gutiérrez C, Vallejo A, Hernández-Novoa B, Díaz L, Abad Fernández M et al.. The CD4/CD8 ratio in HIV-infected subjects is independently associated with T-cell activation despite long-term viral suppression. J Infect. 2013; 66:57-66.
  • [56]Serrano-Villar S, Sainz T, Lee SA, Hunt PW, Sinclair E, Shacklett BL et al.. HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality. PLoS Pathogens. 2014; 10:e1004078.
  • [57]Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes. J Leukoc Biol. 2010; 88:1119-1130.
  • [58]Pensieroso S, Galli L, Nozza S, Ruffin N, Castagna A, Tambussi G et al.. B-cell subset alterations and correlated factors in HIV-1 infection. AIDS. 2013; 27:1209-17.
  • [59]Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB et al.. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003; 9:727-8.
  • [60]Costiniuk CT, Jenabian MA. HIV Reservoir Dynamics in the Face of Highly Active Antiretroviral Therapy. AIDS Patient Care STDs. 2015; 29:55-68.
  • [61]Medina-Ramírez M, Sánchez-Merino V, Sánchez-Palomino S, Merino-Mansilla A, Ferreira CB, Pérez I et al.. Broadly cross-neutralizing antibodies in HIV-1 patients with undetectable viremia. J Virol. 2011; 85:5804-13.
  • [62]Sáez-Cirión A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F et al.. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci USA. 2007; 104:6776-81.
  • [63]Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol. 2014; 12:750-64.
  • [64]McKinstry KK, Strutt TM, Swain SL. The potential of CD4 T-cell memory. Immunology. 2010; 130:1-9.
  • [65]Cui W, Kaech SM. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol Rev. 2010; 236:151-66.
  • [66]Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harb Perspect Med. 2012; 2(10).
  • [67]García F, León A, Gatell JM, Plana M, Gallart T. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother. 2012; 8:569-81.
  • [68]Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. Challenges in HIV Vaccine Research for Treatment and Prevention. Frontiers Immunol. 2014; 5:417.
  • [69]Walker B, McMichael A. The T-cell response to HIV. Cold Spring Harb Perspect Med. 2012; 2:a007054.
  • [70]Carrington M, Alter G. Innate immune control of HIV. Cold Spring Harb Perspect Med. 2012; 2:a007070.
  • [71]Castells M. Rapid desensitization for hypersensitivity reactions to medications. Immunol Allergy Clin North Am. 2009; 29:585-606.
  • [72]Keet CA, Wood RA. Emerging therapies for food allergy. J Clin Invest. 2014; 124:1880-1886.
  • [73]Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. N Engl J Med. 2004; 351:2295-301.
  • [74]Leroux-Roels I, Borkowski A, Vanwolleghem T, Dramé M, Clement F, Hons E et al.. Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine: a randomised controlled trial. Lancet. 2007; 370:580-9.
  • [75]Pope M, Haase AT. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat Med. 2003; 9:847-52.
  • [76]Haase A. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010; 464:217-23.
  • [77]Coleman CM, Wu L. HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology. 2009; 6:51. BioMed Central Full Text
  • [78]Saksena NK, Wang B, Zhou L, Soedjono M, Ho YS, Conceicao V. HIV reservoirs in vivo and new strategies for possible eradication of HIV from the reservoir sites. HIV/AIDS (Auckl). 2010; 2:103-22.
  • [79]Iglesias-Ussel MD, Romerio F. HIV reservoirs: the new frontier. AIDS Rev. 2011; 13:13-29.
  • [80]Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T et al.. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999; 5:512-7.
  • [81]Buttò S, Fiorelli V, Tripiciano A, Ruiz-Alvarez MJ, Scoglio A, Ensoli F et al.. Sequence conservation and antibody cross-recognition of clade B human immunodeficiency virus (HIV) type 1 Tat protein in HIV-1-infected Italians, Ugandans, and South Africans. J Infect Dis. 2003; 188:1171-80.
  • [82]Gregory TR. Animal Genome Size Database http://www.genomesize.com 2013.
  • [83]Casabianca A, Orlandi C, Canovari B, Scotti M, Acetoso M, Valentini M et al.. A real time PCR platform for the simultaneous quantification of total and extrachromosomal HIV DNA forms in blood of HIV-1 infected patients. PLoS ONE. 2014; 9:e111919.
  • [84]Bannert N, Kurth R. The evolutionary dynamics of Human Endogenous Retroviral families. Annu Rev Genomics Hum Genet. 2006; 7:149-73.
  文献评价指标  
  下载次数:11次 浏览次数:6次