期刊论文详细信息
Molecular Pain
Small organic molecule disruptors of Cav3.2 - USP5 interactions reverse inflammatory and neuropathic pain
Gerald W Zamponi2  Tom A Pfeifer1  Lina Chen2  Clare M Gladding1  N Daniel Berger2  Agustin Garcia Caballero2  Vinicius M Gadotti2 
[1] Centre for Drug Research and Development, 2405 Wesbrook Mall – 4th Floor, Vancouver V6T 1Z3, BC, Canada;Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary T2N 4N1, NW, Canada
关键词: Gossypetin;    Suramin;    Chronic pain;    USP5;    T-type channels;   
Others  :  1159801
DOI  :  10.1186/s12990-015-0011-8
 received in 2015-01-02, accepted in 2015-03-02,  发布年份 2015
PDF
【 摘 要 】

Background

Cav3.2 channels facilitate nociceptive transmission and are upregulated in DRG neurons in response to nerve injury or peripheral inflammation. We reported that this enhancement of Cav3.2 currents in afferent neurons is mediated by deubiquitination of the channels by the deubiquitinase USP5, and that disrupting USP5/Cav3.2 channel interactions protected from inflammatory and neuropathic pain.

Results

Here we describe the development of a small molecule screening assay for USP5-Cav3.2 disruptors, and report on two hits of a ~5000 compound screen - suramin and the flavonoid gossypetin. In mouse models of inflammatory pain and neuropathic pain, both suramin and gossypetin produced dose-dependent and long-lasting mechanical anti-hyperalgesia that was abolished or greatly attenuated in Cav3.2 null mice. Suramin and Cav3.2/USP5 Tat-disruptor peptides were also tested in models of diabetic neuropathy and visceral pain, and provided remarkable protection.

Conclusions

Overall, our findings provide proof of concept for a new class of analgesics that target T-type channel deubiquitination.

【 授权许可】

   
2015 Gadotti et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150410041534633.pdf 2087KB PDF download
Figure 8. 39KB Image download
Figure 7. 35KB Image download
Figure 6. 49KB Image download
Figure 5. 47KB Image download
Figure 4. 32KB Image download
Figure 3. 41KB Image download
Figure 2. 50KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Jacus MO, Uebele VN, Renger JJ, Todorovic SM: Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 2012, 32:9374-82.
  • [2]Waxman SG, Zamponi GW: Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 2014, 17:153-63.
  • [3]Todorovic SM, Jevtovic-Todorovic V: Regulation of T-type calcium channels in the peripheral pain pathway. Channels 2007, 1:238-45.
  • [4]Todorovic SM, Meyenburg A, Jevtovic-Todorovic V: Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res 2002, 951:336-40.
  • [5]Dogrul A, Gardell LR, Ossipov MH, Tulunay FC, Lai J, Porreca F: Reversal of experimental neuropathic pain by T-type calcium channel blockers. Pain 2003, 105:159-68.
  • [6]Francois A, Kerckhove N, Meleine M, Alloui A, Barrere C, Gelot A, Uebele VN, Renger JJ, Eschalier A, Ardid D, et al.: State-dependent properties of a new T-type calcium channel blocker enhance Ca(V)3.2 selectivity and support analgesic effects. Pain 2013, 154:283-293.
  • [7]Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, et al.: TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 2011, 80:900-10.
  • [8]Bladen C, Gunduz MG, Simsek R, Safak C, Zamponi GW: Synthesis and evaluation of 1,4-dihydropyridine derivatives with calcium channel blocking activity. Pflugers Archiv 2014, 466:1355-63.
  • [9]Bladen C, Gadotti VM, Gunduz MG, Berger ND, Simsek R, Safak C, et al. 1,4-Dihydropyridine derivatives with T-type calcium channel blocking activity attenuate inflammatory and neuropathic pain. Pflugers Archiv. 2015.(epub ahead of print doi:10.1007/s00424-014-1566-3).
  • [10]Bourinet E, Alloui A, Monteil A, Barrere C, Couette B, Poirot O, et al.: Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J 2005, 24:315-24.
  • [11]Jagodic MM, Pathirathna S, Nelson MT, Mancuso S, Joksovic PM, Rosenberg ER, et al.: Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J Neurosci 2007, 27:3305-16.
  • [12]Jagodic MM, Pathirathna S, Joksovic PM, Lee W, Nelson MT, Naik AK, et al.: Upregulation of the T-type calcium current in small rat sensory neurons after chronic constrictive injury of the sciatic nerve. J Neurophysiol 2008, 99:3151-6.
  • [13]Marger F, Gelot A, Alloui A, Matricon J, Ferrer JF, Barrere C, et al.: T-type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome. PNAS 2011, 108:11268-73.
  • [14]Messinger RB, Naik AK, Jagodic MM, Nelson MT, Lee WY, Choe WJ, Orestes P, Latham JR, Todorovic SM, Jevtovic-Todorovic V: In vivo silencing of the Ca(V)3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 2009, 145:184-195.
  • [15]Garcia-Caballero A, Gadotti VM, Stemkowski P, Weiss N, Souza IA, Hodgkinson V, Bladen C, Chen L, Hamid J, Pizzoccaro A, et al.: The deubiquitinating enzyme USP5 modulates neuropathic and inflammatory pain by enhancing Cav3.2 channel activity. Neuron 2014, 83:1144-1158.
  • [16]Besche HC, Haas W, Gygi SP, Goldberg AL: Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 2009, 48:2538-49.
  • [17]Komander D, Clague MJ, Urbe S: Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009, 10:550-63.
  • [18]Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH: Recent research on the biological activity of suramin. Pharmacol Rev 1993, 45:177-203.
  • [19]Hausmann R, Rettinger J, Gerevich Z, Meis S, Kassack MU, Illes P, et al.: The suramin analog 4,4′,4″,4‴-(carbonylbis(imino-5,1,3-benzenetriylbis (carbonylimino)))tetra-kis-benzenesulfonic acid (NF110) potently blocks P2X3 receptors: subtype selectivity is determined by location of sulfonic acid groups. Mol Pharmacol 2006, 69:2058-67.
  • [20]Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY: Antiartherosclerotic effects of plant flavonoids. BioMed Res Int 2014, 2014:480258.
  • [21]Chen JH, Tsai CW, Wang CP, Lin HH: Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation. Tox Appl Pharm 2013, 272:313-24.
  • [22]Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al.: The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993, 43:817-24.
  • [23]Dyck PJ, Litchy WJ, Lehman KA, Hokanson JL, Low PA, O’Brien PC: Variables influencing neuropathic endpoints: the Rochester Diabetic Neuropathy Study of Healthy Subjects. Neurology 1995, 45:1115-21.
  • [24]Edwards JL, Vincent AM, Cheng HT, Feldman EL: Diabetic neuropathy: mechanisms to management. Pharmacol Therapeut 2008, 120:1-34.
  • [25]Daousi C, Benbow SJ, Woodward A, MacFarlane IA: The natural history of chronic painful peripheral neuropathy in a community diabetes population. Diab Med 2006, 23:1021-4.
  • [26]Davies M, Brophy S, Williams R, Taylor A: The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care 2006, 29:1518-22.
  • [27]Ziegler D, Rathmann W, Meisinger C, Dickhaus T, Mielck A, Group KS: Prevalence and risk factors of neuropathic pain in survivors of myocardial infarction with pre-diabetes and diabetes. The KORA Myocardial Infarction Registry. Eur J Pain 2009, 13:582-7.
  • [28]Ziegler D, Movsesyan L, Mankovsky B, Gurieva I, Abylaiuly Z, Strokov I: Treatment of symptomatic polyneuropathy with actovegin in type 2 diabetic patients. Diabetes Care 2009, 32:1479-84.
  • [29]Srinath AI, Walter C, Newara MC, Szigethy EM: Pain management in patients with inflammatory bowel disease: insights for the clinician. Therap Adv Gastroenterol 2012, 5:339-57.
  • [30]Ali MK, Ashraf A, Biswas NN, Karmakar UK, Afroz S: Antinociceptive, anti-inflammatory and antidiarrheal activities of ethanolic calyx extract of Hibiscus sabdariffa Linn. (Malvaceae) in mice. Chinese J integr med 2011, 9:626-631.
  • [31]Driessen B, Reimann W, Selve N, Friderichs E, Bultmann R: Antinociceptive effect of intrathecally administered P2-purinoceptor antagonists in rats. Brain Res 1994, 666:182-8.
  • [32]Wu Y, Willcockson HH, Maixner W, Light AR: Suramin inhibits spinal cord microglia activation and long-term hyperalgesia induced by formalin injection. J Pain 2004, 5:48-55.
  • [33]Sawynok J, Reid A: Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of a purinergic p2X receptor. Eur J Pharmacol 1997, 330:115-21.
  • [34]Li N, Lu ZY, Yu LH, Burnstock G, Deng XM, Ma B: Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain 2014, 10:21. BioMed Central Full Text
  • [35]Spelta V, Jiang LH, Surprenant A, North RA: Kinetics of antagonist actions at rat P2X2/3 heteromeric receptors. Br J Pharmacol 2002, 135:1524-30.
  • [36]Grubb BD, Evans RJ: Characterization of cultured dorsal root ganglion neuron P2X receptors. Eur J Neurosci 1999, 11:149-54.
  • [37]McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP: Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem 2008, 8:1384-94.
  • [38]Eisenberger MA, Sinibaldi VJ, Reyno LM, Sridhara R, Jodrell DI, Zuhowski EG, et al.: Phase I and clinical evaluation of a pharmacologically guided regimen of suramin in patients with hormone-refractory prostate cancer. J Clin Oncol 1995, 13:2174-86.
  • [39]Garcia-Schurmann JM, Schulze H, Haupt G, Pastor J, Allolio B, Senge T: Suramin treatment in hormone- and chemotherapy-refractory prostate cancer. Urology 1999, 53:535-41.
  • [40]Small EJ, Meyer M, Marshall ME, Reyno LM, Meyers FJ, Natale RB, et al.: Suramin therapy for patients with symptomatic hormone-refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin Oncol 2000, 18:1440-50.
  • [41]Allaert FA: Prevention of recurrent cystitis in women: double-blind, placebo-controlled study of Hibiscus sabdariffa L. extract. La Lettre de l’Infectiologue 2010, 25:56-60.
  • [42]Ferreira J, Campos MM, Pesquero JB, Araujo RC, Bader M, Calixto JB: Evidence for the participation of kinins in Freund’s adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice. Neuropharmacology 2001, 41:1006-12.
  • [43]Malmberg AB, Basbaum AI: Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 1998, 76:215-22.
  • [44]Ribeiro RA, Vale ML, Thomazzi SM, Paschoalato AB, Poole S, Ferreira SH, et al.: Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. Eur J Pharmacol 2000, 387:111-8.
  • [45]Koster R, Anderson M, deBeer EJ: Acetic acid for analgesic screening. Fed Proc 1959, 18:412.
  • [46]Tjølsen A, Hole K. Animal Models of Analgesia. In: Dickenson A, Besson JM, editors. Berlin Springer; 1997.
  • [47]Hylden JL, Wilcox GL: Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980, 67:313-6.
  文献评价指标  
  下载次数:86次 浏览次数:16次