期刊论文详细信息
Particle and Fibre Toxicology
The curse of the prey: Sarcoptes mite molecular analysis reveals potential prey-to-predator parasitic infestation in wild animals from Masai Mara, Kenya
Samer Alasaad3  Ramón C Soriguer4  William Ogara1  Gerald Muchemi1  Ndichu Maingi6  Jackson Ombui1  Luca Rossi2  Francis Gakuya5 
[1] Department of Public Health, Pharmacology & Toxicology, University of Nairobi, Kenya;Dipartimento di Produzioni Animali, Epidemiologia ed Ecologia, Università degli Studi di Torino, Via Leonardo da Vinci 44, I-10095, Grugliasco, Italy;Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n 41092 Sevilla, Spain;Department of Veterinary and Capture Services, Kenya Wildlife Service, Kenya;Department of Pathology and Microbiology, University of Nairobi, Kenya
关键词: favourite prey;    Thomson's gazelle;    wildebeest;    lion;    cheetah;    gene flow;    genetic structure;    microsatellites;    Sarcoptes scabiei;   
Others  :  1235339
DOI  :  10.1186/1756-3305-4-193
 received in 2011-08-21, accepted in 2011-10-06,  发布年份 2011
PDF
【 摘 要 】

Background

Recently, there have been attempts to understand the molecular epidemiology of Sarcoptes scabiei, to evaluate the gene flow between isolates of S. scabiei from different hosts and geographic regions. However, to our knowledge, a molecular study has not been carried out to assess the molecular diversity and gene flow of Sarcoptes mite in a predator/prey ecosystem.

Results

Our study revealed an absence of gene flow between the two herbivore (Thomson's gazelle and wildebeest)- and between the two carnivore (lion and cheetah)-derived Sarcoptes populations from Masai Mara (Kenya), which is in discrepancy with the host-taxon law described for wild animals in Europe. Lion- and wildebeest-derived Sarcoptes mite populations were similar yet different from the Thomson's gazelle-derived Sarcoptes population. This could be attributed to Sarcoptes cross-infestation from wildebeest ("favourite prey") of the lion, but not from Thomson's gazelle. The cheetah-derived Sarcoptes population had different subpopulations: one is cheetah-private, one similar to the wildebeest- and lion-derived Sarcoptes populations, and another similar to the Thomson's gazelle-derived Sarcoptes mite population, where both wildebeest and Thomson's gazelle are "favourite preys" for the cheetah.

Conclusions

In a predator/prey ecosystem, like Masai Mara in Kenya, it seems that Sarcoptes infestation in wild animals is prey-to-predator-wise, depending on the predator's "favourite prey". More studies on the lion and cheetah diet and behaviour could be of great help to clarify the addressed hypotheses. This study could have further ramification in the epidemiological studies and the monitoring protocols of the neglected Sarcoptes mite in predator/prey ecosystems.

【 授权许可】

   
2011 Gakuya et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20160115082808789.pdf 864KB PDF download
Figure 3. 94KB Image download
Figure 2. 38KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Bornstein S, Mörner T, Samuel WM: Sarcoptes scabiei and sarcoptic mange. 2PndP edition. Edited by Samuel WM, Pybus MJ, Kocan AA. Iowa State University Press, Ames; 2001:107-19. (Eds) Parasitic diseases of wild mammals, ISBN 0-8138-2978- X
  • [2]Pence DB, Ueckermann E: Sarcoptic mange in wildlife. Rev Sci Tech 2002, 21:385-398.
  • [3]Alasaad S, Walton S, Rossi L, Bornstein S, Abu-Madi M, Soriguer RC, Fitzgerald S, Zhu XQ, Zimmermann W, Ugbomoiko US, Pei KJC, Heukelbach J: Sarcoptes-World Molecular Network (Sarcoptes-WMN): integrating research on scabies. Int J Inf Dis 2011, 15:294-297.
  • [4]Obasanjo OO, Wu P, Conlon M, Karanfil LV, Pryor P, Moler G, Anhalt G, Chaisson RE, Perl TM: An outbreak of scabies in a teaching hospital: lessons learned. Infect Contr Hosp Epidemiol 2001, 22:13-18.
  • [5]Rossi L, Fraquelli C, Vesco U, Permunian R, Sommavilla GM, Carmignola G, Da Pozzo M, Meneguz PG: Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy. Eur J Wildl Res 2007, 53:131-141.
  • [6]Alasaad S, Schuster RK, Gakuya F, Theneyan H, Jowers MJ, Maione S, Molinar-Min A, Soriguer RC, Rossi L: Applicability of molecular markers to determine parasitic infection origins in the animal trade: A case study from Sarcoptes mites in wildebeest. Forensic Sci Med Pathol 2011, in press.
  • [7]Heukelbach J, Feldmeier H: Scabies. Lancet 2006, 367:1767-1774.
  • [8]Green MS: Epidemiology of scabies. Epidemiol Rev 1989, 11:126-150.
  • [9]Alasaad S, Soglia D, Spalenza V, Maione S, Soriguer RC, Pérez JM, Rasero R, Ryser Degiorgis MP, Nimmervoll H, Zhu XQ, Rossi L: Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas? Vet Parasitol 2009, 159:181-185.
  • [10]Walton SF, Choy JL, Bonson A, Valle A, McBroom J, Taplin D, Arlian L, Mathews JD, Currie B, Kemp DJ: Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. Am J Trop Med Hyg 1999, 61:542-547.
  • [11]Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kemp DJ: Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasitol 2004, 34:839-849.
  • [12]Alasaad S, Soglia D, Sarasa M, Soriguer RC, Pérez JM, Granados JE, Rasero R, Zhu XQ, Rossi L: Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts: empirical evidence from Iberian ibex-derived mites. Parasitol Res 2008, 104:101-105.
  • [13]Rasero R, Rossi L, Maione S, Sacchi P, Rambozzi L, Sartore S, Soriguer R, Spalenza V, Alasaad S: Host taxon-derived Sarcoptes mites in European wildlife animals, revealed by microsatellite markers. Biol Conserv 2010, 143:1269-1277.
  • [14]Alasaad S, Oleaga A, Casais R, Rossi L, Molinar-Min A, Soriguer RC, Gortázar C: Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain. Parasit Vectors 2011, 4:151. BioMed Central Full Text
  • [15]Gros PM: Status of the cheetah Acinonyx jubatus in Kenya: a field-interview assessment. Biol Conserv 1998, 85:137-149.
  • [16]Weber W, Rabinowitz A: A global perspective on large carnivore conservation. Conserv Biol 1996, 10:1046-1054.
  • [17]Mugera GM, Bwangamoi O, Wandera JG: Diseases caused by Ectoparasites I. In Disease of cattle in Tropical Africa. Kenya Literature Bureau Nairobi; 1979:296-304.
  • [18]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [19]Nejsum P, Roepstorff A, Jørgensen CB, Fredholm M, Göring HH, Anderson TJ, Thamsborg SM: High heritability for Ascaris and Trichuris infection levels in pigs. Heredity 2009, 102:357-364.
  • [20]Estes RD: Behaviour and life history of the wildebeest (Connochaetes taurinus Burchelli). Nature 1966, 212:999-1000.
  • [21]Creel S, Creel MN: Home ranges and habitat selection. In The African wild dog behaviour, ecology and conservation. Edited by Creel S. and Creel M.N. Princeton University Press, 41 street, Princeton, New Jersey 08540; 2002:36-65.
  • [22]Broomhall LSS, Mills MGL, du Toit JT: Home range and habitat use by cheetahs (Acinonyx jubatus) in Kruger National Park. J Ecol 2003, 261:119-128.
  • [23]Houser A, Somers MJ, Boast LK: Home range use of free-ranging cheetah on farm and conservation land in Botswana. S Afr J Wildl Res 2009, 39:11-22.
  • [24]Hayward MW, Hofmeyer M, O'Brien JO, Kerley GIH: Prey preferences of cheetah (Acinonyx jubatus) (Felidae: Carnivora): Morphological limitations or need to capture rapidly consumable prey before kleptoparasites arrive. J Zool 2006, 270:615-627.
  • [25]Owen-Smith N, Mills MG: Shifting prey selection generates contrasting herbivore dynamics within a large-mammal predator-prey web. Ecology 2008, 89:1120-1133.
  • [26]Fryxell JM, Mosser A, Sinclair ARE, Packer C: Group formation stabilizes predator-prey dynamics. Nature 2009, 449:1041-1043.
  • [27]Van Orsdol KG, Handy TP, Bygott M: Ecological correlates of lion social organization (Panthera leo). J Zool 1985, 206:97-112.
  • [28]Lehmann MB, Fuston PJ, Owen CR, Slotow R: Home range utilization and territorial behaviours of lions (Panthera leo) on Korongwe Game reserve, South Africa. PLoS ONE 2008, 3:12.
  • [29]Stern C: The Hardy-Weinberg law. Science 1943, 97:137-138.
  • [30]Price PW: Evolutionary biology of parasites. Princeton University Press, 1980, Princeton NJ;
  • [31]Criscione CD, Poulin R, Blouin S: Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Mol Ecol 2005, 14:2247-2257. 2005
  • [32]Ottichilo WK, Leeuw JD, Skidmore AK, Prims HHT, Said MY: Population trends of large non-migratory wild herbivores and livestock in the Masai Mara ecosystem, Kenya, between 1977 and 1997. Afr J Ecol 2000, 38:202-216.
  • [33]Burney DA: The effects of human activities on cheetah in the Maasai Mara region of Kenya. Msc. Thesis, University of Nairobi, Kenya; 1980.
  • [34]Alasaad S, Rossi L, Soriguer RC, Rambozzi L, Soglia D, Pérez JM. Zhu XQ: Sarcoptes mite from collection to DNA extraction: the lost realm of the neglected parasite. Parasitol Res 2009, 104:723-732.
  • [35]Fain A: Étude de la variabilité de Sarcoptes scabiei avec une revisiondes Sarcoptidae. Acta zool pathol Antverp 1968, 47:1-196.
  • [36]Alasaad S, Rossi L, Maione S, Sartore S, Soriguer RC, Pérez JM, Rasero R, Zhu XQ, Soglia D: HotSHOT Plus ThermalSHOCK, a new and efficient technique for preparation of PCR-quality Sarcoptes mite genomic DNA. Parasitol Res 2008, 103:1455-1457.
  • [37]Raymond M, Rousset F: GENEPOP version 1.2: a population genetics software for exact test and ecumenicism. J Hered 1995, 86:248-249.
  • [38]Excoffier L: Arlequin 3.11 copyright 2006. [http://cmpg.unibe.ch/software/arlequin3] webciteCMPG University of Berne; 2006.
  • [39]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [40]Belkhir K: GENETIX, logiciel sous WindowsTM pour la génétique des populations, Laboratoire Génome et Populations, Université de Montpellier II. [http://www.genetix.univ-montp2.fr/genetix/intro.htm] webcite 1999.
  文献评价指标  
  下载次数:4次 浏览次数:31次