Particle and Fibre Toxicology | |
Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease | |
MingYuan Liu1  ZhiLiang Wu2  YanXia Song1  XiaoLei Liu1  Feng Wang1  Ying Zhao1  XiuPing Wu1  XueLin Wang1  ShuMin Sun3  | |
[1] Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University; Zoonosis Research Centre of State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Changchun 130062, People's Republic of China;Department of Parasitology, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan;Animal Science and Technology College, Inner Mongolia University for Nationalities, 028000 Tongliao, People's Republic of China | |
关键词: Inflammatory Bowel Disease; Helminth; Toll Like Receptors; | |
Others : 1235346 DOI : 10.1186/1756-3305-4-186 |
|
received in 2011-04-09, accepted in 2011-09-27, 发布年份 2011 | |
【 摘 要 】
Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD.
【 授权许可】
2011 Sun et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20160115083041178.pdf | 1646KB | download | |
Figure 4. | 70KB | Image | download |
Figure 3. | 54KB | Image | download |
Figure 2. | 73KB | Image | download |
Figure 1. | 46KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Himmel ME, Hardenberg G, Piccirillo CA, Steiner TS, Levings MK: The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology 2008, 125:145-153.
- [2]Rakoff-Nahoum S, Bousvaros A: Innate and adaptive immune connections in inflammatory bowel diseases. Curr Opin Gastroenterol 2010, 26:572-577.
- [3]Ullman TA, Itzkowitz SH: Intestinal inflammation and cancer. Gastroenterology 2011, 140:1807-1816.
- [4]Cho JH: The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008, 8:458-466.
- [5]Loftus EV Jr: Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004, 126:1504-1517.
- [6]Strachan DP: Hay fever, hygiene, and household size. BMJ 1989, 299:1259-1260.
- [7]Okada H, Kuhn C, Feillet H, Bach JF: The 'hygiene hypothesis' for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010, 160:1-9.
- [8]Strober W, Fuss I, Mannon P: The fundamental basis of inflammatory bowel disease. J Clin Invest 2007, 117:514-521.
- [9]Weinstock JV, Elliott DE: Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 2009, 15:128-133.
- [10]Flohr C, Quinnell RJ, Britton J: Do helminth parasites protect against atopy and allergic disease? Clin Exp Allergy 2009, 39:20-32.
- [11]Aoyama H, Hirata T, Sakugawa H, Watanabe T, Miyagi S, Maeshiro T, Chinen T, Kawane M, Zaha O, Nakayoshi T, Kinjo F, Fujita J: An inverse relationship between autoimmune liver diseases and Strongyloides stercoralis infection. Am J Trop Med Hyg 2007, 76:972-976.
- [12]Osada Y, Kanazawa T: Parasitic helminths: new weapons against immunological disorders. J Biomed Biotechnol 2010, 2010:743-758.
- [13]Bruschi F, Chiumiento L: Trichinella inflammatory myopathy: host or parasite strategy? Parasit Vectors 2011, 4:42. BioMed Central Full Text
- [14]Harnett W, Harnett MM: Therapeutic immunomodulators from nematode parasites. Expert Rev Mol Med 2008, 19:10-23.
- [15]Khan WI, Blennerhasset PA, Varghese AK, Chowdhury SK: Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun 2002, 70:5931-5937.
- [16]Reardon C, Sanchez A, Hogaboam CM, McKay DM: Tapeworm infection reduces epithelial ion transport abnormalities in murine dextran sulfate sodium-induced colitis. Infect Immun 2001, 69:4417-4423.
- [17]Ruyssers NE, De Winter BY, De Man JG, Loukas A, Pearson MS, Weinstock JV: Therapeutic potential of helminthes soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009, 15:491-500.
- [18]Elliott DE, Summers RW, Weinstock JV: Helminths as governors of immune-mediated inflammation. Int J Parasitol 2007, 37:457-464.
- [19]Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV: Trichuris suis therapy in Crohn's disease. Gut 2005, 54:87-90.
- [20]Summers RW, Elliott DE, Qadir K, Urban JF Jr, Thompson R, Weinstock JV: Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003, 98:2034-2041.
- [21]Rook GA: Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 2009, 126:3-11.
- [22]Wei J, Feng J: Signaling pathways associated with inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov 2010, 4:105-17.
- [23]Vavricka SR, Rogler G: New insights into the pathogenesis of Crohn's disease: are they relevant for therapeutic options? Swiss Med Wkly 2009, 139:527-534.
- [24]Sepúlveda SE, Beltrán CJ, Peralta A, Rivas P, Rojas N, Figueroa C, Quera R, Hermoso MA: Inflammatory bowel diseases: an immunological approach. Rev Med Chil 2008, 136:367-75.
- [25]Cario E: Toll-like receptors in inflammatory bowel diseases: a decade later. Inflamm Bowel Dis 2010, 16:1583-1597.
- [26]Nikoopour E, Schwartz JA, Singh B: Therapeutic benefits of regulating inflammation in autoimmunity. Inflamm Allergy Drug Targets 2008, 7:203-210.
- [27]Sartor RB, Muehlbauer M: Microbial host interactions in IBD: implications for pathogenesis and therapy. Curr Gastroenterol Rep 2007, 9:497-507.
- [28]Cario E: Therapeutic impact of toll-like receptors on inflammatory bowel diseases: a multiple-edged sword. Inflamm Bowel Dis 2008, 14:411-421.
- [29]Ishihara S, Rumi MA, Ortega-Cava CF, Kazumori H, Kadowaki Y, Ishimura N, Kinoshita Y: Therapeutic targeting of toll-like receptors in gastrointestinal inflammation. Curr Pharm Des 2006, 12:4215-4228.
- [30]Takeda K, Akira S: Toll-like receptors in innate immunity. Int Immunol 2005, 17:1-14.
- [31]Mowat AM: Does TLR2 regulate intestinal inflammation? Eur J Immunol 2010, 40:318-320.
- [32]Zeytun A, Chaudhary A, Pardington P, Cary R, Gupta G: Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of inflammation. Crit Rev Immunol 2010, 30:53-67.
- [33]Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S: A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004, 303:1522-1526.
- [34]Cario E, Rosenberg IM, Brandwein SL, Beck PL, Reinecker HC, Podolsky DK: Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 2000, 164:966-972.
- [35]Otte JM, Rosenberg IM, Podolsky DK: Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 2003, 124:1866-1878.
- [36]Baumgart DC, Buning C, Geerdts L, Schmidt HH, Genschel J, Fiedler T, Gentz E, Molnar T, Nagy F, Lonovics J, Lochs H, Wiedenmann B, Nickel R, Witt H, Dignass A: The c.1-260C > T promoter variant of CD14 but not the c.896A > G (p.D299G) variant of toll-like receptor 4 (TLR4) genes is associated with inflammatory bowel disease. Digestio 2007, 76:196-202.
- [37]Ince MN, Elliott DE, Setiawan T, Blum A, Metwali A, Wang Y, Urban JF Jr, Weinstock JV: Heligmosomoides polygyrus induces TLR4 on murine mucosal T cells that produce TGFbeta after lipopolysaccharide stimulation. J Immunol 2006, 176:726-729.
- [38]Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, Kamm MA, Stagg AJ: Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005, 129:50-65.
- [39]Levin A, Shibolet O: Toll-like receptors in inflammatory bowel disease- stepping into uncharted territory. World J Gastroenterol 2008, 14:5149-153.
- [40]Kawai T, Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34:637-650.
- [41]Takeda K: Pathogen recognition through natural immunity. Nihon Jibiinkoka Gakkai Kaiho 2011, 114:1-6.
- [42]Sadanaga A, Nakashima H, Akahoshi M, Masutani K, Miyake K, Igawa T, Sugiyama N, Niiro H, Harada M: Protection against autoimmune nephritis in MyD88-deficient MRL/lpr mice. Arthritis Rheum 2007, 56:1618-1628.
- [43]Su SB, Silver PB, Grajewski RS, Agarwal RK, Tang J, Chan CC, Caspi RR: Essential role of the MyD88 pathway, but nonessential roles of TLRs 2, 4, and 9, in the adjuvant effect promoting Th1-mediated autoimmunity. J Immunol 2005, 175:6303-6310.
- [44]Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998, 9:143-150.
- [45]Barrat FJ, Meeker T, Chan JH, Guiducci C, Coffman RL: Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 2007, 37:3582-3586.
- [46]Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ: Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephro 2007, 18:1721-1731.
- [47]Zhu J, Mohan C: Toll-like receptor signaling pathways-therapeutic opportunities. Mediators Inflamm 2010, 781235:1-7.
- [48]Choi YJ, Im E, Chung HK, Pothoulakis C, Rhee SH: TRIF mediates Toll-like receptor 5-induced signaling in intestinal epithelial cells. J Biol Chem 2010, 285:37570-37578.
- [49]Ng MT, Van't Hof R, Crockett JC, Hope ME, Berry S, Thomson J, McLean MH, McColl KE, El-Omar EM, Hold GL: Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect Immun 2010, 78:1345-1352.
- [50]Johnston KL, Wu B, Guimarães A, Ford L, Slatko BE, Taylor MJ: Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes. Parasit Vectors 2010, 3:99. BioMed Central Full Text
- [51]Venugopal PG, Nutman TB, Semnani RT: Activation and regulation of toll-like receptors (TLRs) by helminth parasites. Immunol Res 2009, 43:252-263.
- [52]Babu S, Blauvelt CP, Kumaraswami V, Nutman TB: Diminished expression and function of TLR in lymphatic filariasis: a novel mechanism of immune dysregulation. J Immunol 2005, 175:1170-1176.
- [53]Zhao Y, Zhang S, Jiang L, Jiang J, Liu H: Preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid-induced colitis and bacterial translocation in mice. J Gastroenterol Hepatol 2009, 24:1775-1780.
- [54]Iliev ID, Spadoni I, Mileti E, Matteoli G: Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 2009, 58:1481--1489.
- [55]Li YY, Ishihara S, Aziz MM, Oka A: Autophagy is required for toll-like receptor-mediated interleukin-8 production in intestinal epithelial cells. Int J Mol Med 2011, 27:337-344.
- [56]Bäckhed F, Hornef M: Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat? Microbes Infect 2003, 5:951-959.
- [57]Fukata M, Abreu MT: Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol 2009, 9:680-687.
- [58]Gopal R, Birdsell D, Monroy FP: Regulation of toll-like receptors in intestinal epithelial cells by stress and Toxoplasma gondii infection. Parasite Immunol 2008, 30:563-576.
- [59]Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI: Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291:881-884.
- [60]Yamamoto M, Takeda K: Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract 2010, 240365:1-8.
- [61]Moncada DM, Kammanadiminti SJ, Chadee K: Mucin and Toll-like receptors in host defense against intestinal parasites. Trends Parasitol 2003, 19:305-311.
- [62]Nishigami T, Kataoka TR, Ikeuchi H, Torii I, Sato A, Tomita N, Tsujimura T: Adenocarcinomas associated with perianal fistulae in Crohn's disease have a rectal, not an anal, immunophenotype. Pathology 2011, 43:36-39.
- [63]Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Arizono N: Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. APMIS 2006, 114:270-278.
- [64]Cario E, Gerken G, Podolsky DK: Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004, 127:224-238.
- [65]Lee KD, Guk SM, Chai JY: Toll-like receptor 2 and Muc2 expression on human intestinal epithelial cells by Gymnophalloides seoi adult antigen. J Parasitol 2010, 96:58-66.
- [66]Mustelin T: Restless T cells sniff and go. Science 2006, 313:1902-1903.
- [67]Nagpal K, Plantinga TS, Sirois CM, Monks BG, Latz E, Netea MG, Golenbock DT: Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes. J Biol Chem 2011, 286:11875-11882.
- [68]Kenny EF, O'Neill LA: Signalling adaptors used by Toll-like receptors: an update. Cytokine 2008, 43:342-349.
- [69]Manna P, Ghosh M, Ghosh J, Das J, Sil PC: Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology 2011, 552124:1-21.
- [70]O'Neill LA, Fitzgerald KA, Bowie AG: The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 2003, 24:286-290.
- [71]Moreels TG, Nieuwendijk RJ, De Man JG, De Winter BY, Herman AG, Van Marck EA: Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut 2004, 53:99-107.
- [72]Meyer S, van Liempt E, Imberty A, van Kooyk Y, Geyer H, Geyer R, van Die I: DC-SIGN mediates binding of dendritic cells to authentic pseudo-LewisY glycolipids of Schistosoma mansoni cercariae, the first parasite-specific ligand of DC-SIGN. J Biol Chem 2005, 280:37349-37359.
- [73]Falcón C, Carranza F, Martínez FF: Excretory-secretory products (ESP) from Fasciola hepatica induce tolerogenic properties in myeloid dendritic cells. Vet Immunol Immunopathol 2010, 137:36-46.
- [74]Kar S, Ukil A, Das PK: Cystatin cures visceral leishmaniasis by NF-κB-mediated proinflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway. Eur J Immunol 2011, 41:116-127.
- [75]Harnett W, Harnett MM: Helminth-derived immunomodulators: can understanding the worm produce the pill? Nat Rev Immunol 2010, 10:278-284.
- [76]Plevy SE, Targan SR: Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology 2011, 140:1838-1846.
- [77]Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK: Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Patho 2002, 160:165-173.
- [78]van Stijn CM, Meyer S, van den Broek M, Bruijns SC, van Kooyk Y, Geyer R, van Die I: Schistosoma mansoni worm glycolipids induce an inflammatory phenotype in human dendritic cells by cooperation of TLR4 and DC-SIGN. Mol Immunol 2010, 7-8:1544-1552.
- [79]Donnelly S, O'Neill SM, Stack CM, Robinson MW, Turnbull L, Whitchurch C, Dalton JP: Helminth cysteine proteases inhibit TRIF-dependent activation of macrophages via degradation of TLR3. J Biol Chem 2010, 285:3383-3392.
- [80]Lee J, Gonzales-Navajas JM, Raz E: The "polarizing-tolerizing" mechanism of intestinal epithelium: its relevance to colonic homeostasis. Semin Immunopathol 2008, 30:3-9.
- [81]Ahn DH, Crawley SC, Hokari R, Kato S, Yang SC, Li JD, Kim YS: TNF-alpha activates MUC2 transcription via NF-kappa B but inhibits via JNK activation. Cell Physiol Biochem 2005, 15:29-40.
- [82]Correale J, Farez M: Helminth antigens modulate immune responses in cells from multiple sclerosis patients through TLR2-dependent mechanisms. J Immunol 2009, 183:5999-6012.