Radiation Oncology | |
Analysis of equivalent uniform dose (EUD) and conventional radiation treatment parameters after primary and re-irradiation of malignant glioma | |
Ute Ganswindt1  Claus Belka1  Peter Lang1  Silke B Nachbichler1  Matthias Söhn1  Ivan Karin1  Maximilian Niyazi1  | |
[1] Department of Radiation Oncology, University of Munich, Marchioninistr. 15, Munich 81377, Germany | |
关键词: Radiation necrosis; EUD; Malignant glioma; Re-irradiation; | |
Others : 829496 DOI : 10.1186/1748-717X-8-287 |
|
received in 2013-09-29, accepted in 2013-12-08, 发布年份 2013 | |
【 摘 要 】
Background
Re-irradiation is a reasonable second treatment option for patients with recurrent malignant glioma (MG) after previous radio(chemo)therapy. However, only limited data is available allowing for a precise selection of patients suitable for re-treatment in regard to safety and efficacy.
Methods
Using the department database, 58 patients with two courses of percutaneous radiation were identified. Besides classical dose-volume histogram (DVH) parameters equivalent uniform dose (EUD) values were calculated for the tumor and organs at risk (OARs), retrospectively analyzed and correlated to survival outcome parameters. Cumulative EUD values were also calculated in all cases where previous OAR DVHs were available.
Results
Median follow-up was 265 days and no relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. Time interval between first and second irradiation was regularly above 6 months. As a conservative estimation of the cumulative EUD to the OARs, the EUDs of first and second irradiation were added. Median cumulative EUD to the optic chiasm was 48.8 Gy (range, 2.5–76.5 Gy), 57.4 Gy (range, 2.7–75.3 Gy) to the brainstem, 20.9/22.1 Gy (range, 0.0–68.3 Gy) to the right/left optic nerve and 73.8 Gy (range, 64.9–77.3 Gy) to the brain. No correlation between treated volume and survival was seen.
Conclusions
This study provides retrospective estimates on cumulative doses at the OARs. EUD values are derived and may serve as reference for further studies, including planning studies where specific constraints are needed.
【 授权许可】
2013 Niyazi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140714071442579.pdf | 182KB | download |
【 参考文献 】
- [1]Bashir R, Hochberg F, Oot R: Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 1988, 23(1):27-30.
- [2]Jansen EP, Dewit LG, van Herk M, Bartelink H: Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 2000, 56(2):151-156.
- [3]Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG: Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989, 16(6):1405-1409.
- [4]Minniti G, Amelio D, Amichetti M, Salvati M, Muni R, Bozzao A, Lanzetta G, Scarpino S, Arcella A, Enrici RM: Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide. Radiother Oncol 2010, 97(3):377-381.
- [5]Uehara K, Sasayama T, Miyawaki D, Nishimura H, Yoshida K, Okamoto Y, Mukumoto N, Akasaka H, Nishihara M, Fujii O, et al.: Patterns of failure after multimodal treatments for high-grade glioma: effectiveness of MIB-1 labeling index. Radiat Oncol 2012, 7:104. BioMed Central Full Text
- [6]Niyazi M, Schwarz SB, Suchorska B, Belka C: Radiotherapy with and without temozolomide in elderly patients with glioblastoma. Strahlenther Onkol 2012, 188(2):154-159.
- [7]Grabenbauer GG: Long-Term survival of patients with glioblastoma multiforme treated with chemoradiation: correlation with MGMT promoter methylation status. Strahlenther Onkol 2010, 186(3):185-187.
- [8]Gerstein J, Franz K, Steinbach JP, Seifert V, Rodel C, Weiss C: Radiochemotherapy with temozolomide for patients with glioblastoma. Prognostic factors and long-term outcome of unselected patients from a single institution. Strahlenther Onkol 2011, 187(11):722-728.
- [9]Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al.: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009, 10(5):459-466.
- [10]Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G: Survival and quality of life after hypofractionated stereotactic radiotherapy for recurrent malignant glioma. J Neurooncol 2007, 81(3):287-294.
- [11]Henke G, Paulsen F, Steinbach JP, Ganswindt U, Isijanov H, Kortmann RD, Bamberg M, Belka C: Hypofractionated reirradiation for recurrent malignant glioma. Strahlenther Onkol 2009, 185(2):113-119.
- [12]Vordermark D, Kolbl O, Ruprecht K, Vince GH, Bratengeier K, Flentje M: Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer 2005, 5:55. BioMed Central Full Text
- [13]Niyazi M, Siefert A, Schwarz SB, Ganswindt U, Kreth FW, Tonn JC, Belka C: Therapeutic options for recurrent malignant glioma. Radiother Oncol 2011, 98(1):1-14.
- [14]Combs SE, Gutwein S, Thilmann C, Huber P, Debus J, Schulz-Ertner D: Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 2005, 74(2):167-171.
- [15]Combs SE, Widmer V, Thilmann C, Hof H, Debus J, Schulz-Ertner D: Stereotactic radiosurgery (SRS) - Treatment option for recurrent glioblastoma multiforme (GBM). Cancer 2005, 104(10):2168-2173.
- [16]Biswas T, Okunieff P, Schell MC, Smudzin T, Pilcher WH, Bakos RS, Vates GE, Walter KA, Wensel A, Korones DN, et al.: Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol 2009, 4:11. BioMed Central Full Text
- [17]Fuller CD, Choi M, Forthuber B, Wang SJ, Rajagiriyil N, Salter BJ, Fuss M: Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme. Radiat Oncol 2007, 2:26. BioMed Central Full Text
- [18]Theelen A, Martens J, Bosmans G, Houben R, Jager JJ, Rutten I, Lambin P, Minken AW, Baumert BG: Relocatable fixation systems in intracranial stereotactic radiotherapy. Accuracy of serial CT scans and patient acceptance in a randomized design. Strahlenther Onkol 2012, 188(1):84-90.
- [19]Ang KK, Price RE, Stephens LC, Jiang GL, Feng Y, Schultheiss TE, Peters LJ: The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 1993, 25(3):459-464.
- [20]Combs SE, Debus J, Schulz-Ertner D: Radiotherapeutic alternatives for previously irradiated recurrent gliomas. Bmc Cancer 2007, 7:167. BioMed Central Full Text
- [21]Fokas E, Wacker U, Gross MW, Henzel M, Encheva E, Engenhart-Cabillic R: Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol 2009, 185(4):235-240.
- [22]Niyazi M, Sohn M, Schwarz SB, Lang P, Belka C, Ganswindt U: Radiation treatment parameters for re-irradiation of malignant glioma. Strahlenther Onkol 2012, 188(4):328-333.
- [23]Chinot OL, Macdonald DR, Abrey LE, Zahlmann G, Kerloeguen Y, Cloughesy TF: Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 2013, 13(5):347.
- [24]Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352(10):987-996.
- [25]Niyazi M, Ganswindt U, Schwarz SB, Kreth FW, Tonn JC, Geisler J, la Fougere C, Ertl L, Linn J, Siefert A, et al.: Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys 2012, 82(1):67-76.
- [26]Niemierko A: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 1997, 24(1):103-110.
- [27]Wu QW, Mohan R, Niemierko A, Schmidt-Ullrich R: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 2002, 52(1):224-235.
- [28]Gay HA, Niemierko A: A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med 2007, 23(3–4):115-125.
- [29]Kehwar TS: Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Canc Res Ther 2005, 1(3):168-179.
- [30]Sobotta B, Sohn M, Shaw W, Alber M: On expedient properties of common biological score functions for multi-modality, adaptive and 4D dose optimization. Phys Med Biol 2011, 56(10):N123-N129.
- [31]Combs SE, Thilmann C, Edler L, Debus J, Schulz-Ertner D: Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 2005, 23(34):8863-8869.
- [32]Beal K, Abrey LE, Gutin PH: Antiangiogenic agents in the treatment of recurrent or newly diagnosed glioblastoma: analysis of single-agent and combined modality approaches. Radiat Oncol 2011, 6:2. BioMed Central Full Text
- [33]Mayer R, Sminia P: Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 2008, 70(5):1350-1360.
- [34]Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP: Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 2010, 76(3 Suppl):S20-S27.
- [35]Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J: Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 2010, 76(3 Suppl):S28-S35.
- [36]Mayo C, Yorke E, Merchant TE: Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 2010, 76(3 Suppl):S36-S41.
- [37]Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M: Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991, 21(1):109-122.