期刊论文详细信息
Molecular Cytogenetics
An easy “SteamDrop” method for high quality plant chromosome preparation
Ludmila Khrustaleva2  Alexander Soloviev3  Katrijn Van Laere1  Mikhail Divashuk2  Ilya Kirov1 
[1] Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium;Center of Molecular Biotechnology, Russian State Agrarian University-MTAA, Listvennichnaya Alleya 5, 127550 Moscow, Russia;Department of Genetics and Biotechnology, Russian State Agrarian University-MTAA, Timiryazevskay str. 49, 127550 Moscow, Russia
关键词: New method;    Steam application;    Fluorescence in situ hybridization;    Plant chromosome preparation;   
Others  :  1150234
DOI  :  10.1186/1755-8166-7-21
 received in 2014-02-02, accepted in 2014-02-26,  发布年份 2014
PDF
【 摘 要 】

Background

The chromosome preparation is a crucial step for obtaining satisfactory results in molecular cytogenetic researches. The preparation of plant chromosomes for molecular cytogenetic purposes remains a challenge for some species. In contrast to human chromosome preparation, the processes occurring during plant chromosome preparation and causing chromosome spreading are still poorly understood.

Results

We studied the dynamics of plant chromosome spreading after dropping cell suspension on slides. We showed that steam stimulates cytoplasm hydrolysis and rapid chromosome spreading and that chromosomes stretch during this chromosome spreading. Based on these observations, we developed a novel method, named “SteamDrop”, for the preparation of well-spread mitotic and pachytene chromosomes and successfully used it for 28 plant species with large and small chromosomes. We applied cell suspensions in ethanol instead of the commonly used ethanol/acetic acid fixative. Mitotic and meiotic chromosomes prepared via “SteamDrop” were used in fluorescent in situ hybridization (FISH) experiments with repetitive and unique DNA probes. Long storage of cell suspensions in ethanol did not impair the quality of chromosome preparations.

Conclusion

The SteamDrop procedure provides a robust and routine method for high quality plant chromosome preparations. The method can be applied for metaphase as well as pachytene chromosome preparation in wide range of species. The chromosomes prepared by SteamDrop are well suitable for repetitive and unique DNA visualization.

【 授权许可】

   
2014 Kirov et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405153940559.pdf 1426KB PDF download
Figure 5. 78KB Image download
Figure 4. 83KB Image download
Figure 3. 42KB Image download
Figure 2. 65KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Claussen U: The pipette method: a new rapid technique for chromosome analysis in prenatal diagnosis. Hum Genet 1980, 54:277-278.
  • [2]Rǿnne M: Chromosome preparation and high resolution banding (review). J Dairy Sci 1990, 4:337-365.
  • [3]Spurberck JL, Zinmeister AR, Meyer KJ, Jalal SM: Dynamics of chromosome spreading. Am J Med Genet 1996, 61:387-393.
  • [4]Hliscs R, Muhlig P, Claussen U: The spreading of metaphases is a slow process which leads to a stretching of chromosomes. Cytogenet Cell Genet 1997, 76:167-171.
  • [5]Henegariu O, Heerema NA, Wright LL, Bray-Ward P, Ward DC, Vance GH: Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Biotech Histochem 2001, 74:160-166.
  • [6]Claussen U, Michel S, Mühlig P, Westermann M, Grummt UW, Kromeyer-Hauschild K, Liehr T: Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet Genome Res 2003, 98(2–3):136-146.
  • [7]Deng W, Tsao SW, Lucas JN, Leung CS, Cheung ALM: A new method for improving metaphase chromosome spreading. Cytometry 2003, 51(1):46-51.
  • [8]Moralli D, Yusuf M, Mandegar M, Khoja S, Monaco ZL, Volpi EV: An improved technique for chromosomal analysis of human ES and iPS cells. Stem Cell Rev 2011, 7:471-477.
  • [9]Belling J: On counting chromosomes in pollen-mother cells. Am Nat 1921, 55:573-574.
  • [10]Schwarzacher T, Ambros P, Schweizer D: Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 1980, 134:293-297.
  • [11]Schwarzacher T, Leitch AR: Enzymatic treatment of plant material to spread chromosomes for in situ hybridization. Protocols for nucleic acid analysis by nonradioactive probes. Methods Mol Biol 1994, 28:153-160.
  • [12]Pijnacker LP, Ferwerda MA: Giemsa C-banding of potato chromosomes. Can J Genet Cytol 1984, 26:415-419.
  • [13]Fukui K, Ilijima K: Somatic chromosome map of rice by imaging methods. Theor Appl Genet 1991, 81:589-596.
  • [14]Mouras A, Salesses G, Lutz : Sur I’utilisation des protoplastes en cytologie: amelioration d’une methode recente en vue de l’identification des chromosomes mitotiques genres Nzcutiana et Prunus. Caryologia 1978, 31:117-127.
  • [15]Mouras A, Saul MW, Essad S, Potrykus I: Localization by in situ hybridization of a low copy chimaeric resistance gene introduced into plants by direct gene transfer. Mol Gen Genet 1987, 207:204-209.
  • [16]Murata M: Staining air dried protoplasts for study of plant chromosomes. Stain Technol 1983, 58:101-106.
  • [17]Ambros PF, Matzke MA, Matzke AJM: Detection of a 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma 1986, 94:11-18.
  • [18]Geber G, Schweizer D: Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 1988, 158:97-106.
  • [19]Andras SC, Hartman TPV, Marshall JA, Marchant R, Power JB, Cocking EC, Davey MR: A drop-spreading technique to produce cytoplasm free mitotic preparations from plants with small chromosomes. Chromosome Res 1999, 7:641-647.
  • [20]Kato A, Lamb JC, Birchler JA: Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A 2004, 101:13554-13559.
  • [21]Kato A, Albert PS, Vega JM, Birchler JA: Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 2006, 81(2–3):71-78.
  • [22]Anamthawat-Jonsson K: Preparation of chromosomes from plant leaf meristems for karyotype analysis and in situ hybridization. Methods Cell Sci 2003, 25:91-95.
  • [23]Carvalho CR, Saraiva LS: An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 1993, 68:142-145.
  • [24]Jewell DC, Islam-Faridi N: A Technique for Somatic Chromosome Preparation and C-Banding of Maize. In The Maize Handbook. Edited by Freeling M, Walbot V. New York: Springer-Verlag; 1994:484-493.
  • [25]Rothfels KH, Siminovitch L: An air-drying technique for flattening chromosomes in mammalian cells grown in vitro. Biotech Histochem 1958, 33(2):73-77.
  • [26]Danilova TV, Birchler JA: Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 2008, 117:345-356.
  • [27]Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA: Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 2009, 151(3):1167-1174.
  • [28]Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G: A fluorescence in situ hybridization system for karyotyping soybean. Genetics 2010, 185(3):727-744.
  • [29]Komuro S, Endo R, Shikata K, Kato A: Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 2013, 56(3):131-137.
  • [30]Ma Y, Islam-Faridl MN, Crane CF, Stelly DM, Price HJ, Byrne DH: A new procedure to prepare slides of metaphase chromosomes of roses. HortScience 1996, 31:855-857.
  • [31]Lawrence GJ, Appels R: Mapping the nucleolus organizer region, seed protein loci and isozyme loci on chromosome 1R in rye. Theor Appl Genet 1986, 71(5):742-749.
  • [32]Alexandrov OS, Divashuk MG, Yakovin NA, Karlov GI: Sex chromosome differentiation in Humulus japonicus Siebold & Zuccarini, 1846 (Cannabaceae) revealed by fluorescence in situ hybridization of subtelomeric repeat. Comp Cytogenet 2012, 6:239-247.
  • [33]Rogers SO, Bendich AJ: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 1985, 5:69-76.
  • [34]Khrustaleva L, Kik C: Localization of single copy T-DNA insertion in transgenic shallots (Allium cepa L.) by using ultra-sensitive FISH with tyramide signal amplification. Plant J 2001, 25:699-707.
  • [35]Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jdnsson K, Leitch AR, Shi M, Leitch IJ: In-situ hybridization with automated chromosome denaturation. Technique 1991, 3:109-116.
  • [36]Schmidt T, Schwarzacher T, Heslop-Harrison JS: Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 1994, 88(6–7):629-636.
  • [37]Shibata F, Hizume M: Evolution of 5S rDNA units and their chromosomal localization in Allium cepa and Allium schoenoprasum revealed by microdissection and FISH. Theor Appl Genet 2002, 105:167-172.
  • [38]Masamura N, McCallum J, Khrustaleva L, Kenel F, Pither-Joyce M, Shono J, Suzuki G, Mukai Y, Yamauchi N, Shigyo M: Chromosomal organization and sequence diversity of genes encoding lachrymatory factor synthase in Allium cepa L. G3 (Bethesda) 2012, 2(6):643-651.
  • [39]Khrustaleva L, Kirov I, Romanov D, Budylin M, Lapitskaya I, Kiseleva A, Fesenko I, Karlov G: The chromosome organization of genes and some types of extragenic DNA in Allium. Acta Hort 2012, 969:43-51.
  • [40]Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR: Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 2001, 17:474-480.
  • [41]Gallyamov MO, Tartsch B, Khokhlov AR, Sheiko SS, Borner HG, Matyjaszewski K, Moller M: Conformational dynamics of single molecules visualized in real time by scanning force microscopy: macromolecular mobility on a substrate in different vapours. J Microsc 2004, 215:245-256.
  • [42]Greilhuber J: Why plant chromosomes do not show G-bands? Theor Appl Genet 1977, 50:121-124.
  文献评价指标  
  下载次数:47次 浏览次数:2次