期刊论文详细信息
Particle and Fibre Toxicology
Differential antibody response to the Anopheles gambiae gSG6 and cE5 salivary proteins in individuals naturally exposed to bites of malaria vectors
Bruno Arcà3  David Modiano3  Gabriella Fiorentino2  Issa Nèbiè1  Sodiomon Bienvenu Sirima1  Valentina Mangano3  Raffaele Ronca2  Fabrizio Lombardo3  Cinzia Rizzo3 
[1] Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso;Department of Biology, “Federico II” University, Naples, Italy;Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
关键词: Malaria epidemiology;    Plasmodium transmission;    Marker of exposure;    IgG4;    IgG1;    IgG;    Immune response;    Salivary proteins;    Anopheles gambiae;   
Others  :  1148914
DOI  :  10.1186/s13071-014-0549-8
 received in 2014-09-26, accepted in 2014-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

Mosquito saliva plays crucial roles in blood feeding but also evokes in hosts an anti-saliva antibody response. The IgG response to the Anopheles gambiae salivary protein gSG6 was previously shown to be a reliable indicator of human exposure to Afrotropical malaria vectors. We analyzed here the humoral response to the salivary anti-thrombin cE5 in a group of individuals from a malaria hyperendemic area of Burkina Faso.

Methods

ELISA was used to measure the anti-cE5 IgG, IgG1 and IgG4 antibody levels in plasma samples collected in the village of Barkoumbilen (Burkina Faso) among individuals of the Rimaibé ethnic group. Anti-gSG6 IgG levels were also determined for comparison. Anopheles vector density in the study area was evaluated by indoor pyrethrum spray catches.

Results

The cE5 protein was highly immunogenic and triggered in exposed individuals a relatively long-lasting antibody response, as shown by its unchanged persistence after a few months of absent or very low exposure (dry season). In addition cE5 did not induce immune tolerance, as previously suggested for the gSG6 antigen. Finally, IgG subclass analysis suggested that exposed individuals may mount a Th1-type immune response against the cE5 protein.

Conclusions

The anti-cE5 IgG response is shown here to be a sensitive indicator of human exposure to anopheline vectors and to represent an additional tool for malaria epidemiological studies. It may be especially useful in conditions of low vector density, to monitor transiently exposed individuals (i.e. travellers/workers/soldiers spending a few months in tropical Africa) and to evaluate the impact of insecticide treated nets on vector control. Moreover, the gSG6 and cE5 salivary proteins were shown to trigger in exposed individuals a strikingly different immune response with (i) gSG6 evoking a short-lived IgG response, characterized by high IgG4 levels and most likely induction of immune tolerance, and (ii) cE5 eliciting a longer-living IgG response, dominated by anti-cE5 IgG1 antibodies and not inducing tolerance mechanisms. We believe that these two antigens may represent useful reagents to further investigate the so far overlooked role of Anopheles saliva and salivary proteins in host early immune response to Plasmodium parasites.

【 授权许可】

   
2014 Rizzo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404230643924.pdf 704KB PDF download
Figure 4. 21KB Image download
Figure 3. 44KB Image download
Figure 2. 68KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Ribeiro JMC, Arcà B: From Sialomes to the Sialoverse: an Insight into Salivary Potion of Blood-Feeding Insects. Adv Insect Physiol 2009, 37:59-118.
  • [2]Ribeiro JMC, Francischetti IM: Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 2003, 48:73-88.
  • [3]Leitner WW, Costero-Saint Denis A, Wali T: Immunological consequences of arthropod vector-derived salivary factors. Eur J Immunol 2011, 41(12):3396-3400.
  • [4]Leitner WW, Wali T, Costero-Saint Denis A: Is arthropod saliva the achilles’ heel of vector-borne diseases? Front Immunol 2013, 4:255.
  • [5]Titus RG, Bishop JV, Mejia JS: The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol 2006, 28(4):131-141.
  • [6]Billingsley PF, Baird J, Mitchell JA, Drakeley C: Immune interactions between mosquitoes and their hosts. Parasite Immunol 2006, 28(4):143-153.
  • [7]Fontaine A, Diouf I, Bakkali N, Misse D, Pages F, Fusai T, Rogier C, Almeras L: Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors 2011, 4:187. BioMed Central Full Text
  • [8]Arcà B, Struchiner CJ, Pham VM, Sferra G, Lombardo F, Pombi M, Ribeiro JM: Positive selection drives accelerated evolution of mosquito salivary genes associated with blood-feeding. Insect Mol Biol 2014, 23(1):122-131.
  • [9]Milleron RS, Ribeiro JM, Elnaime D, Soong L, Lanzaro GC: Negative effect of antibodies against maxadilan on the fitness of the sand fly vector of American visceral leishmaniasis. Am J Trop Med Hyg 2004, 70(3):278-285.
  • [10]Ribeiro JM, Mans BJ, Arcà B: An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol 2010, 40(11):767-784.
  • [11]Lanfrancotti A, Lombardo F, Santolamazza F, Veneri M, Castrignano T, Coluzzi M, Arcà B: Novel cDNAs encoding salivary proteins from the malaria vector Anopheles gambiae. FEBS Lett 2002, 517(1–3):67-71.
  • [12]Lombardo F, Ronca R, Rizzo C, Mestres-Simon M, Lanfrancotti A, Curra C, Fiorentino G, Bourgouin C, Ribeiro JM, Petrarca V, Ponzi M, Coluzzi M, Arcà B: The Anopheles gambiae salivary protein gSG6: an anopheline-specific protein with a blood-feeding role. Insect Biochem Mol Biol 2009, 39(7):457-466.
  • [13]Proietti C, Verra F, Bretscher MT, Stone W, Kanoi BN, Balikagala B, Egwang TG, Corran P, Ronca R, Arcà B, Riley EM, Crisanti A, Drakeley C, Bousema T: Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda. Parasite Immunol 2013, 35(5–6):164-173.
  • [14]Rizzo C, Ronca R, Fiorentino G, Mangano VD, Sirima SB, Nebie I, Petrarca V, Modiano D, Arcà B: Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa. Malar J 2011, 10:206. BioMed Central Full Text
  • [15]Rizzo C, Ronca R, Fiorentino G, Verra F, Mangano V, Poinsignon A, Sirima SB, Nebie I, Lombardo F, Remoue F, Coluzzi M, Petrarca V, Modiano D, Arcà B: Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors. PLoS One 2011, 6(3):e17980.
  • [16]Stone W, Bousema T, Jones S, Gesase S, Hashim R, Gosling R, Carneiro I, Chandramohan D, Theander T, Ronca R, Modiano D, Arcà B, Drakeley C: IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk. PLoS One 2012, 7(6):e40170.
  • [17]Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, Sokhna C, Cisse B, Simondon F, Remoue F: Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J 2009, 8:198. BioMed Central Full Text
  • [18]Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arcà B, Simondon F, Remoue F: Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 2008, 3(6):e2472.
  • [19]Poinsignon A, Samb B, Doucoure S, Drame PM, Sarr JB, Sow C, Cornelie S, Maiga S, Thiam C, Rogerie F, Guindo S, Hermann E, Simondon F, Dia I, Riveau G, Konate L, Remoue F: First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to Anopheles funestus bites. Trop Med Int Health 2010, 15(10):1198-1203.
  • [20]Corran P, Coleman P, Riley E, Drakeley C: Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 2007, 23(12):575-582.
  • [21]Arcà B, Lombardo F, De Lara Capurro M, Della Torre A, Dimopoulos G, James AA, Coluzzi M: Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 1999, 96(4):1516-1521.
  • [22]Ronca R, Kotsyfakis M, Lombardo F, Rizzo C, Curra C, Ponzi M, Fiorentino G, Ribeiro JM, Arcà B: The Anopheles gambiae cE5, a tight- and fast-binding thrombin inhibitor with post-transcriptionally regulated salivary-restricted expression. Insect Biochem Mol Biol 2012, 42(9):610-620.
  • [23]Valenzuela JG, Francischetti IM, Ribeiro JMC: Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus. Biochemistry 1999, 38(34):11209-11215.
  • [24]Modiano D, Chiucchiuini A, Petrarca V, Sirima BS, Luoni G, Perlmann H, Esposito F, Coluzzi M: Humoral response to Plasmodium falciparum Pf155/ring-infected erythrocyte surface antigen and Pf332 in three sympatric ethnic groups of Burkina Faso. Am J Trop Med Hyg 1998, 58(2):220-224.
  • [25]Modiano D, Petrarca V, Sirima BS, Nebie I, Diallo D, Esposito F, Coluzzi M: Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci U S A 1996, 93(23):13206-13211.
  • [26]Rizzo C, Ronca R, Lombardo F, Mangano V, Sirima SB, Nebie I, Fiorentino G, Troye-Blomberg M, Modiano D, Arcà B: IgG1 and IgG4 antibody responses to the Anopheles gambiae salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperhendemic area of Burkina Faso. PLoS One 2014, 9(4):e96130.
  • [27]Modiano D, Petrarca V, Sirima BS, Nebie I, Luoni G, Esposito F, Coluzzi M: Baseline immunity of the population and impact of insecticide-treated curtains on malaria infection. Am J Trop Med Hyg 1998, 59(2):336-340.
  • [28]Brummer-Korvenkontio H, Lappalainen P, Reunala T, Palosuo T: Detection of mosquito saliva-specific IgE and IgG4 antibodies by immunoblotting. J Allergy Clin Immunol 1994, 93(3):551-555.
  • [29]Peng Z, Simons FE: Mosquito allergy: immune mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol 2004, 133(2):198-209.
  • [30]Reunala T, Brummer-Korvenkontio H, Palosuo K, Miyanij M, Ruiz-Maldonado R, Love A, Francois G, Palosuo T: Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int Arch Allergy Immunol 1994, 104(4):366-371.
  • [31]Orlandi-Pradines E, Almeras L, Denis De Senneville L, Barbe S, Remoue F, Villard C, Cornelie S, Penhoat K, Pascual A, Bourgouin C, Fontenille D, Bonnet J, Corre-Catelin N, Reiter P, Pages F, Laffite D, Boulanger D, Simondon F, Pradines B, Fusai T, Rogier C: Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes Infect 2007, 9(12–13):1454-1462.
  • [32]Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembene M, Fortes F, Simondon F, Carnevale P, Remoue F: Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 2010, 5(12):e15596.
  • [33]Bretscher PA: On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol 2014, 79(6):361-376.
  • [34]Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL: Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 1998, 188(10):1941-1953.
  • [35]Boppana VD, Thangamani S, Adler AJ, Wikel SK: SAAG-4 is a novel mosquito salivary protein that programmes host CD4 T cells to express IL-4. Parasite Immunol 2009, 31(6):287-295.
  • [36]Depinay N, Hacini F, Beghdadi W, Peronet R, Mecheri S: Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J Immunol 2006, 176(7):4141-4146.
  • [37]Schneider BS, Higgs S: The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg 2008, 102(5):400-408.
  • [38]Titus RG, Ribeiro JMC: Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 1988, 239(4845):1306-1308.
  • [39]Wikel S: Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013, 4:337.
  • [40]Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D: Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 2000, 290(5495):1351-1354.
  • [41]Gomes R, Oliveira F: The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol 2012, 3:110.
  • [42]Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ, Silva C, de Oliveira CI, Miranda JC, Elnaiem DE, Kamhawi S, Valenzuela JG, Brodskyn CI: Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci U S A 2008, 105(22):7845-7850.
  • [43]Valenzuela JG, Belkaid Y, Garfield MK, Mendez S, Kamhawi S, Rowton ED, Sacks DL, Ribeiro JMC: Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 2001, 194(3):331-342.
  • [44]Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R: Quantitative imaging of Plasmodium transmission from mosquito to mammal. Nat Med 2006, 12(2):220-224.
  • [45]Gueirard P, Tavares J, Thiberge S, Bernex F, Ishino T, Milon G, Franke-Fayard B, Janse CJ, Menard R, Amino R: Development of the malaria parasite in the skin of the mammalian host. Proc Natl Acad Sci U S A 2010, 107(43):18640-18645.
  • [46]Vanderberg JP: Imaging mosquito transmission of Plasmodium sporozoites into the mammalian host: immunological implications. Parasitol Int 2014, 63(1):150-164.
  • [47]Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacci JB, Zavala F: CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat Med 2007, 13(9):1035-1041.
  • [48]Guilbride DL, Guilbride PD, Gawlinski P: Malaria’s deadly secret: a skin stage. Trends Parasitol 2012, 28(4):142-150.
  • [49]Menard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R: Looking under the skin: the first steps in malarial infection and immunity. Nat Rev Microbiol 2013, 11(10):701-712.
  • [50]Sinnis P, Zavala F: The skin: where malaria infection and the host immune response begin. Semin Immunopathol 2012, 34(6):787-792.
  • [51]Donovan MJ, Messmore AS, Scrafford DA, Sacks DL, Kamhawi S, McDowell MA: Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun 2007, 75(5):2523-2530.
  • [52]Fonseca L, Seixas E, Butcher G, Langhorne J: Cytokine responses of CD4+ T cells during a Plasmodium chabaudi chabaudi (ER) blood-stage infection in mice initiated by the natural route of infection. Malar J 2007, 6:77. BioMed Central Full Text
  • [53]Kebaier C, Voza T, Vanderberg J: Neither mosquito saliva nor immunity to saliva has a detectable effect on the infectivity of Plasmodium sporozoites injected into mice. Infect Immun 2010, 78(1):545-551.
  文献评价指标  
  下载次数:19次 浏览次数:24次