期刊论文详细信息
Molecular Pain
Attenuation of inflammatory and neuropathic pain behaviors in mice through activation of free fatty acid receptor GPR40
Atsuro Miyata3  Kazunori Arita5  Megumu Yoshimura4  Seiji Shioda1  Tatsuki Oyoshi5  Toshihide Asada3  Jun Watanabe1  Tomoya Nakamachi2  Takashi Kurihara3  Prasanna Karki3 
[1] Department of Anatomy, Showa University, School of Medicine, 1-5-8 Hatanodai, Tokyo 142-8555, Shinagawa-ku, Japan;Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan;Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Kagoshima, Japan;Graduate School of Health Sciences, Kumamoto Health Science University, 325 Izumi-machi, Kumamoto 861-5598, Japan;Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City 890-8544, Kagoshima, Japan
关键词: Whole-cell patch-clamp;    Spinal nerve ligation;    Spinal cord;    Hyperalgesia;    FFAR1;    FFA1;    Complete Freund’s adjuvant;    Carrageenan;    Allodynia;   
Others  :  1130926
DOI  :  10.1186/s12990-015-0003-8
 received in 2014-10-28, accepted in 2015-01-26,  发布年份 2015
【 摘 要 】

Background

The G-protein-coupled receptor 40 (GPR40) is suggested to function as a transmembrane receptor for medium- to long-chain free fatty acids and is implicated to play a role in free fatty acids-mediated enhancement of glucose-stimulated insulin secretion from pancreas. However, the functional role of GPR40 in nervous system including somatosensory pain signaling has not been fully examined yet.

Results

Intrathecal injection of GPR40 agonist (MEDICA16 or GW9508) dose-dependently reduced ipsilateral mechanical allodynia in CFA and SNL models and thermal hyperalgesia in carrageenan model. These anti-allodynic and anti-hyperalgesic effects were almost completely reversed by a GPR40 antagonist, GW1100. Immunohistochemical analysis revealed that GPR40 is expressed in spinal dorsal horn and dorsal root ganglion neurons, and immunoblot analysis showed that carrageenan or CFA inflammation or spinal nerve injury resulted in increased expression of GPR40 in these areas. Patch-clamp recordings from spinal cord slices exhibited that bath-application of either MEDICA16 or GW9508 significantly decreased the frequency of spontaneous excitatory postsynaptic currents in the substantia gelatinosa neurons of the three pain models.

Conclusions

Our results indicate that GPR40 signaling pathway plays an important suppressive role in spinal nociceptive processing after inflammation or nerve injury, and that GPR40 agonists might serve as a new class of analgesics for treating inflammatory and neuropathic pain.

【 授权许可】

   
2015 Karki et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 5. 228KB Image download
Figure 4. 152KB Image download
Figure 3. 57KB Image download
Figure 2. 97KB Image download
Figure 1. 66KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, et al.: The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 2003, 278:11303-11.
  • [2]Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, et al.: Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 2003, 422:173-6.
  • [3]Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B: A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem Biophys Res Commun 2003, 301:406-10.
  • [4]Mancini AD, Poitout V: The fatty acid receptor FFA1/GPR40 a decade later: how much do we know ? Trends Endocri Metab 2013, 24:398-407.
  • [5]Stoddart LA, Smith NJ, Milligan G: International union of pharmacology. LXXI. free fatty acid receptor FFA1, -2, and -3: Pharmacology and pathophysiological functions. Pharmacological Rev 2008, 60:405-17.
  • [6]Defossa E, Wagner M: Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med Chem Lett 2014, 24:2991-3000.
  • [7]Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, et al.: Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 2007, 58:394-401.
  • [8]Nakamoto K, Nishinaka T, Matsumoto K, Kasuya F, Mankura M, Koyama Y, et al.: Involvement of the long-chain fatty acid receptor GPR40 as a novel pain regulatory system. Brain Res 2012, 1432:74-83.
  • [9]Zamarbide M, Etayo-Labiano I, Ricobaraza A, Martínez-Pinilla E, Aymerich MS, Lanciego JL, et al.: GPR40 activation leads to CREB and ERK phosphorylation in primary cultures of neurons from the mouse CNS and in human neuroblastoma cells. Hippocampus 2014, 24:733-9.
  • [10]Kurihara T, Karki P, Asada T, Nagayama T, Yoshimura M, Arita K, et al.: Role of Free Fatty Acid Receptor GPR40 in Mouse Models of Inflammatory and Neuropathic Pain [abstract]. Society for Neuroscience, New Orleans, LA; 2012.
  • [11]Kurihara T, Karki P, Nakamachi T, Asada T, Yoshimura M, Shioda S, et al.: Involvement of free fatty acid receptor GPR40 in the regulation of spinal nociceptive transmission [abstract]. J Pharmacol Sci 2014, 124(Suppl. 1):50P.
  • [12]Hara T, Hirasawa A, Sun Q, Koshimizu T, Itsubo C, Sadakane K, et al.: Flow cytometry-based binding assay for GPR40 (FFAR1; free fatty acid receptor 1). Mol Pharmacol 2009, 75:85-91.
  • [13]Hara T, Hirasawa A, Sun Q, Sadakane K, Itsubo C, Iga T, et al.: Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn-Schmied Arch Pharmacol 2009, 380:247-55.
  • [14]Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, et al.: Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 2006, 148:619-28.
  • [15]Stoddart LA, Brown AJ, Milligan G: Uncovering the pharmacology of the G protein-coupled receptor GPR40: High apparent constitutive activity in guanosine 5’-o-(3-[35S] thio) triphosphate binding studies reflects binding of an endogenous agonist. Mol Pharmacol 2007, 71:994-1005.
  • [16]Kurihara T, Sakurai E, Toyomoto M, Kii I, Kawamoto D, Asada T, et al.: Alleviation of behavioral hypersensitivity in mouse models of inflammatory pain with two structurally different casein kinase 1 (CK1) inhibitors. Mol Pain 2014, 10:17. BioMed Central Full Text
  • [17]Yoshimura M, Jessell TM: Primary afferent-evoked synaptic responses and slow potential generation in rat substantia gelatinosa neurons in vitro. J Neurophysiol 1989, 62:96-108.
  • [18]Yoshimura M, Jessell TM: Amino-acid mediated EPSPs at primary afferent synapses with substantia gelatinosa neurons in the rat spinal cord. J Physiol Lond 1990, 430:315-35.
  • [19]Todd AJ, Koerber HR: Neuroanatomical substrates of spinal nociception. In Wall and Melzack’s Textbook of Pain. 6th edition. Edited by McMahon SB, Koltzenburg M, Tracy I, Turk DC. Elsevier, Philadelphia, PA; 2013:77-93.
  • [20]Willis WD Jr, Coggeshall RE: Sensory mechanisms of the spinal cord. 3rd edition. Kluwer Academic/Plenum Publishers, New York; 2004.
  • [21]Ji R-R, Kohno T, Moore KA, Woolf CJ: Central sensitization and LTP: do pain and memory share similar mechanisms ? Trends Neurosci 2003, 26:696-705.
  • [22]Latremoliere A, Woolf CJ: Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009, 10:895-926.
  • [23]Sandkühler J: Spinal cord plasticity and pain. In Wall and Melzack’s Textbook of Pain. 6th edition. Edited by McMahon SB, Koltzenburg M, Tracy I, Turk DC. Elsevier, Philadelphia, PA; 2013:94-110.
  • [24]Engelman HS, MacDermott AB: Presynaptic ionotropic receptors and control of transmitter release. Nat Rev Neurosci 2004, 5:135-45.
  • [25]Kawasaki Y, Zhang L, Cheng J-K, Ji R-R: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1β, interleukin-6, and tumor necrosis factor-α, in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 2008, 28:5189-94.
  • [26]Park C-K, Xu Z-Z, Liu T, Lü N, Serhan CN, Ji R-R: Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct role of Resolvin D1, D2, and E1. J Neurosci 2011, 31:18433-8.
  • [27]Xu Z-Z, Zhang L, Liu T, Park JY, Berta T, Yang R, et al.: Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 2010, 16:592-7.
  • [28]Yang K, Kumamoto E, Furue H, Yoshimura M: Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 1998, 255:135-8.
  • [29]Nakamoto K, Nishinaka T, Sato N, Mankura M, Koyama Y, Kasuya F, et al.: Hypothalamic GPR40 signaling activated by free long chain fatty acids suppresses CFA-induced inflammatory chronic pain. PLoS One 2013, 8:e81563.
  • [30]Ali Z, Ringkamp M, Hartke TV, Chien HF, Flavahan NA, Campbell JN, et al.: Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol 1999, 81:455-66.
  • [31]Gold MS: Spinal nerve ligation: what to blame for the pain and why. Pain 2000, 84:117-20.
  • [32]Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, et al.: Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003, 89:1588-602.
  • [33]Obata K, Yamanaka H, Kobayashi K, Dai Y, Mizushima T, Katsura H, et al.: Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci 2004, 24:10211-22.
  • [34]Cui JG, Holmin S, Mathiesen T, Meyerson BA, Linderoth B: Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 2000, 88:239-48.
  • [35]Myers RR, Heckman HM, Rodriguez M: Reduced hyperalgesia in nerve-injured WLD mice: relationship to nerve fiber phagocytosis, axonal degeneration, and regeneration in normal mice. Exp Neurol 1996, 141:94-101.
  • [36]Ramer MS, French GD, Bisby MA: Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG. Pain 1997, 72:71-8.
  • [37]Shamash S, Reichert F, Rotshenker S: The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 2002, 22:3052-60.
  • [38]Devový P, Brázda V, Klusáková I, Hradilová-Svíženská I: Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J Neuroinflamm 2013, 10:55. BioMed Central Full Text
  • [39]Oaklander AL, Belzberg AJ: Unilateral nerve injury down-regulates mRNA for Na+ channel SCN10A bilaterally in rat dorsal root ganglia. Brain Res Mol Brain Res 1997, 52:162-5.
  • [40]Pitcher GM, Henry JL: Cellular mechanisms of hyperalgesia and spontaneous pain in a spinalized rat model of peripheral neuropathy: changes in myelinated afferent inputs implicated. Eur J Neurosci 2000, 12:2006-20.
  • [41]Yu LC, Hansson P, Brodda-Jansen G, Theodorsson E, Lundeberg T: Intrathecal CGRP8-37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation. Br J Pharmacol 1996, 117:43-50.
  • [42]Koltzenburg M, Wall PD, McMahon SB: Does the right side know what the left is doing ? Trends Neurosci 1999, 22:122-7.
  • [43]Kohno T, Moor KA, Baba H, Woolf CJ: Peripheral nerve injury alters excitatory synaptic transmission in lamina II of the rat dorsal horn. J Physiol Lond 2003, 548:131-8.
  • [44]Sakurai E, Kurihara T, Kouchi K, Saegusa H, Zong S, Tanabe T: Upregulation of casein kinase 1ε in dorsal root ganglia and spinal cord after mouse spinal nerve injury contributes to neuropathic pain. Mol Pain 2009, 5:74. BioMed Central Full Text
  • [45]Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V: Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP. Mol Pain 2006, 2:31. BioMed Central Full Text
  • [46]Takasu K, Ono H, Tanabe M: Spinal hyperpolarization-activated cyclic nucleotide-gated cation channels at primary afferent terminals contribute to chronic pain. Pain 2010, 151:87-96.
  • [47]Rajagopal S, Rajagopal K, Lefkowitz RJ: Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 2010, 9:373-86.
  • [48]Whalen EJ, Rajagopal S, Lefkowitz RJ: Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2011, 17:126-39.
  • [49]Schröder R, Schmidt J, Blättermann S, Peters L, Janssen N, Grundmann M, et al.: Applying label-free dynamic mass redistribution technology to frame signaling of G protein-coupled receptors noninvasively in living cells. Nat Protoc 2011, 6:1748-60.
  • [50]Feng DD, Luo Z, Roh S, Hernandez M, Tawadros N, Keating DJ, et al.: Reduction in voltage-gated K+ currents in primary cultured rat pancreatic β-cells by linoleic acids. Endocrinology 2006, 147:674-82.
  • [51]Iadarola MJ, Brady LS, Draisci G, Dubner R: Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioral parameters and opioid receptor binding. Pain 1988, 45:313-26.
  • [52]Kayser V, Guilbaud G: Local and remote modifications of nociceptive sensitivity during carrageenan-induced inflammation in the rat. Pain 1987, 28:99-107.
  • [53]Sammons MJ, Raval P, Davey PT, Rogers D, Parsons AA, Bingham S: Carrageenan-induced thermal hyperalgesia in the mouse: role of nerve growth factor and the mitogen-activated protein kinase pathway. Brain Res 2000, 876:48-54.
  • [54]Stein C, Millan MJ, Herz A: Unilateral inflammation of the hind paw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 1988, 31:445-51.
  • [55]Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, et al.: Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J 2001, 20:2349-56.
  • [56]Hylden JL, Wilcox GL: Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980, 67:313-6.
  • [57]Kato G, Furue H, Katafuchi T, Yasaka T, Iwamoto Y, Yoshimura M: Electrophysiological mapping of the nociceptive inputs to the substantia gelatinosa in rat horizontal spinal cord slices. J Physiol 2004, 560:303-15.
  • [58]Yoshimura M, Nishi S: Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents. Neuroscience 1993, 53:519-26.
  文献评价指标  
  下载次数:37次 浏览次数:14次