期刊论文详细信息
Stem Cell Research & Therapy
Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model
Nagendra Yadava1  Chul Kim1  Cyril Chou1  Carol Rouphael2  Cleyton C. Domingues2  Sabyasachi Sen2 
[1] Pioneer Valley Life Sciences Institute, and Division of Endocrinology, Diabetes & Metabolism at Baystate Medical Center of Tufts University School of Springfield, Springfield, MA, USA;Department of Medicine, Division of Endocrinology and Metabolism, The George Washington University, School of Medicine and Health Sciences, 2300 I Street, Ross Hall Suite: 450, Washington 20037, DC, USA
关键词: Glucose;    Diabetes;    Superoxide;    SOD2;    Mesenchymal stem cells;   
Others  :  1235616
DOI  :  10.1186/s13287-015-0224-9
 received in 2015-09-15, accepted in 2015-11-04,  发布年份 2015
PDF
【 摘 要 】

Introduction

Human mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into fat, muscle, bone and cartilage cells. Exposure of subcutaneous abdominal adipose tissue derived AD-MSCs to high glucose (HG) leads to superoxide accumulation and up-regulation of inflammatory molecules. Our aim was to inquire how HG exposure affects MSCs differentiation and whether the mechanism is reversible.

Methods

We exposed human adipose tissue derived MSCs to HG (25 mM) and compared it to normal glucose (NG, 5.5 mM) exposed cells at 7, 10 and 14 days. We examined mitochondrial superoxide accumulation (Mitosox-Red), cellular oxygen consumption rate (OCR, Seahorse) and gene expression.

Results

HG increased reactive superoxide (ROS) accumulation noted by day 7 both in cytosol and mitochondria. The OCR between the NG and HG exposed groups however did not change until 10 days at which point OCR of HG exposed cells were reduced significantly. We noted that HG exposure upregulated mRNA expression of adipogenic (PPARG, FABP-4, CREBP alpha and beta), inflammatory (IL-6 and TNF alpha) and antioxidant (SOD2 and Catalase) genes. Next, we used AdSOD2 to upregulate SOD2 prior to HG exposure and thereby noted reduction in superoxide generation. SOD2 upregulation helped reduce mRNA over-expression of PPARG, FABP-4, IL-6 and TNFα. In a series of separate experiments, we delivered the eGFP and SOD2 upregulated MSCs (5 days post ex-vivo transduction) and saline intra-peritoneally (IP) to obese diabetic (db/db) mice. We confirmed homing-in of eGFP labeled MSCs, delivered IP, to different inflamed fat pockets, particularly omental fat. Mice receiving SOD2-MSCs showed progressive reduction in body weight and improved glucose tolerance (GTT) at 4 weeks, post MSCs transplantation compared to the GFP-MSC group (control).

Conclusions

High glucose evokes superoxide generation, OCR reduction and adipogenic differentiation. Mitochondrial superoxide dismutase upregulation quenches excess superoxide and reduces adipocyte inflammation. Delivery of superoxide dismutase (SOD2) using MSCs as a gene delivery vehicle reduces inflammation and improves glucose tolerance in vivo. Suppression of superoxide production and adipocyte inflammation using mitochondrial superoxide dismutase may be a novel and safe therapeutic tool to combat hyperglycemia mediated effects.

【 授权许可】

   
2015 Sen et al.

【 预 览 】
附件列表
Files Size Format View
20160123100801530.pdf 1930KB PDF download
Fig. 15. 23KB Image download
Fig. 14. 127KB Image download
Fig. 13. 38KB Image download
Fig. 12. 11KB Image download
Fig. 11. 16KB Image download
Fig. 10. 28KB Image download
Fig. 9. 31KB Image download
Fig. 8. 37KB Image download
Fig. 7. 40KB Image download
Fig. 6. 24KB Image download
Fig. 5. 31KB Image download
Fig. 4. 55KB Image download
Fig. 3. 10KB Image download
Fig. 2. 19KB Image download
Fig. 1. 47KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

【 参考文献 】
  • [1]Kopelman PG: Obesity as a medical problem. Nature. 2000, 404:635-43.
  • [2]Couillard C, Mauriège P, Imbeault P, Prud'homme D, Nadeau A, Tremblay A, et al.: Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia. Int J Obes Relat Metab Disord. 2000, 24:782-8.
  • [3]Roncari DA: Hormonal influences on the replication and maturation of adipocyte precursors. Int J Obes. 1981, 5:547-52.
  • [4]Spiegelman BM, Enerback S: The adipocyte: a multifunctional cell. Cell Metab. 2006, 4:425-7.
  • [5]García-Castro J, Trigueros C, Madrenas J, Pérez-Simón JA, Rodriguez R, Menendez P: Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 2008, 12(6B):2552-65.
  • [6]Dhanasekaran M, Indumathi S, Rajkumar JS, Sudarsanam D: Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochem Funct 2013, 31(1):20-9.
  • [7]Aguiari P, Leo S, Zavan B, Vindigni V, Rimessi A, Bianchi K, et al.: High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U S A 2008, 105(4):1226-31.
  • [8]Li YM, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, et al.: Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 2007, 363(1):209-15.
  • [9]Montague CT, O'Rahilly S: The perils of portliness: causes and consequences of visceral adiposity. Diabetes. 2000, 49:883-8.
  • [10]Allen RG, Tresini M: Oxidative stress and gene regulation. Free Radic Biol Med. 2000, 28:463-99.
  • [11]Valko M, et al.: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007, 39:44-84.
  • [12]Cadenas E, Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000, 29:222-30.
  • [13]Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. Cell. 2005, 120:483-95.
  • [14]Keaney JF Jr, et al.: Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003, 23:434-9.
  • [15]Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al.: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004, 114:1752-61.
  • [16]Temple NJ, Gladwin KK: Fruit, vegetables, and the prevention of cancer: research challenges. Nutrition. 2003, 19:467-70.
  • [17]Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al.: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000, 404:787-90.
  • [18]Yadava N, Houchens T, Potluri P, Scheffler IE: Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 2004, 279(13):12406-13.
  • [19]Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE: Species-specific and mutant MWFE proteins. Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 2002, 277(24):21221-30.
  • [20]Kim C, Patel P, Gouvin LM, Brown ML, Khalil A, Henchey EM, et al.: Comparative analysis of the mitochondrial physiology of pancreatic β cells. Bioenergetics 2014, 3(1):110.
  • [21]Chinta SJ, Rane A, Yadava N, Andersen JK, Nicholls DG, Polster BM: Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic Biol Med 2009, 46(7):939-47.
  • [22]Kovner I, Taicher GZ, Mitchell AD: Calibration and validation of EchoMRI™ whole body composition analysis based on chemical analysis of piglets, in comparison with the same for DXA. Int J Body Compos Res 2010, 8(1):17-29.
  • [23]Sen S, Witkowski S, Lagoy A, Islam AM. A six-week home exercise program improves endothelial function and CD34+ circulating progenitor cells in patients with pre-diabetes. J Endocrinol Metab. 2015;5(1–2):163–71.. http://www.jofem.org/index.php/jofem/article/view/273/323 webcite
  • [24]Standards of medical care in diabetes-2014; American Diabetes Association. Diabetes Care. 2014; 37:S14–S80.
  • [25]Sen S, Conroy S, Hynes SO, McMahon J, O'Doherty A, Bartlett JS, et al.: Gene delivery to the vasculature mediated by low-titre adeno-associated virus serotypes 1 and 5. J Gene Med 2008, 10(2):143-51.
  • [26]Sen S, Merchan J, Dean J, Ii M, Gavin M, Silver M, et al.: Autologous transplantation of endothelial progenitor cells genetically modified by adeno-associated viral vector delivering IGF-1 gene following myocardial infarction. Hum Gene Ther. 2010, 21:1327-34.
  文献评价指标  
  下载次数:53次 浏览次数:5次