期刊论文详细信息
Particle and Fibre Toxicology
Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance
Olivier Duron4  Ana Rivero1  Sylvain Gandon3  Antoine Nicot3  Gregory L’Ambert2  Juilen Vézilier3  Flore Zélé5 
[1] Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, (UMR CNRS-UM1-UM2 5290, IRD 224), Centre de Recherche IRD, 911 Avenue Agropolis, 34394 Montpellier, France;Entente départementale pour la Démoustication du littoral méditerranéen, 165 avenue Paul-Rimbaud, 34184 Montpellier, France;Centre d’Ecologie Fonctionnelle et Evolutive, (UMR CNRS 5175), 1919 Route de Mende, 34293 Montpellier, France;Institut des Sciences de l’Evolution, (UMR CNRS 5554), Université de Montpellier 2, 34095 Montpellier, France;Current address: Centro de Biologia Ambiental, Faculdade de Ciencias da Universidade de Lisboa, Edificio C2, 30 Piso Campo Grande, 1749016 Lisbon, Portugal
关键词: Insecticide resistance;    Filarial nematodes;    Wolbachia;    Plasmodium;    Avian malaria;    Culex pipiens;   
Others  :  1150232
DOI  :  10.1186/1756-3305-7-437
 received in 2014-04-02, accepted in 2014-08-31,  发布年份 2014
PDF
【 摘 要 】

Background

Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild.

Methods

We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito.

Results

Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity.

Conclusion

We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France.

【 授权许可】

   
2014 Zélé et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405153915661.pdf 1883KB PDF download
Figure 6. 18KB Image download
Figure 5. 18KB Image download
Figure 4. 24KB Image download
Figure 3. 50KB Image download
Figure 2. 19KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kim KS, Tsuda Y: Seasonal changes in the feeding pattern of Culex pipiens pallens govern the transmission dynamics of multiple lineages of avian malaria parasites in Japanese wild bird community. Mol Ecol 2010, 19(24):5545-5554.
  • [2]Medeiros MCI, Hamer GL, Ricklefs RE: Host compatibility rather than vector-host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc Lond B Biol Sci 2013, 280(1760):20122947.
  • [3]Rooyen J, Lalubin F, Glaizot O, Christe P: Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasit Vectors 2013, 6:139-139.
  • [4]Lalubin F, Deledevant A, Glaizot O, Christe P: Temporal changes in mosquito abundance (Culex pipiens), avian malaria prevalence and lineage composition. Parasit Vectors 2013, 6:307.
  • [5]Bensch S, Hellgren O, Perez-Tris J: MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Res 2009, 9(5):1353-1358.
  • [6]Glaizot O, Fumagalli L, Iritano K, Lalubin F, Van Rooyen J, Christe P: High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens). PLoS One 2012, 7(4):e34964.
  • [7]Ventim R, Ramos J, Osório H, Lopes R, Pérez-Tris J, Mendes L: Avian malaria infections in western European mosquitoes. Parasitol Res 2012, 111(2):637-645.
  • [8]Gager AB, Loaiza JDR, Dearborn DC, Bermingham E: Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? Mol Ecol 2008, 17(10):2552-2561.
  • [9]Ishtiaq F, Guillaumot L, Clegg SM, Phillimore AB, Black RA, Owens IPF, Mundy NI, Sheldon BC: Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Mol Ecol 2008, 17(20):4545-4555.
  • [10]Inci A, Yildirim A, Njabo KY, Duzlu O, Biskin Z, Ciloglu A: Detection and molecular characterization of avian Plasmodium from mosquitoes in central Turkey. Vet Parasitol 2012, 188(1–2):179-184.
  • [11]Ferraguti M, Martinez-de la Puente J, Munoz J, Roiz D, Ruiz S, Soriguer R, Figuerola J: Avian Plasmodium in Culex and Ochlerotatus mosquitoes from Southern Spain: Effects of season and host-feeding source on parasite dynamics. PLoS One 2013, 8(6):e66237.
  • [12]Santiago-Alarcon D, Palinauskas V, Schaefer HM: Diptera vectors of avian Haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev 2012, 87(4):928-964.
  • [13]Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiunas G, Russell AF, Smith TB: Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 2011, 20(5):1049-1061.
  • [14]Smith DL, Dushoff J, McKenzie FE: The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2004, 2(11):e368.
  • [15]Michalski ML, Erickson SM, Bartholomay LC, Christensen BM: Midgut barrier imparts selective resistance to filarial worm infection in Culex pipiens pipiens. PLoS Negl Trop Dis 2010, 4(11):e875.
  • [16]Molina-Cruz A, Lehmann T, Knoeckel J: Could culicine mosquitoes transmit human malaria? Trends Parasitol 2013, 29(11):530-537.
  • [17]Gomez-Diaz E, Doherty PF, Duneau D, McCoy KD: Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 2010, 3(4):391-401.
  • [18]Lachish S, Gopalaswamy AM, Knowles SCL, Sheldon BC: Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests. Methods Ecol Evol 2012, 3(2):339-348.
  • [19]MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA: Estimating site occupancy rates when detection probabilities are less than one. Ecology 2002, 83(8):2248-2255.
  • [20]Bailey LL, Simons TR, Pollock KH: Estimating site occupancy and species detection probability parameters for terrestrial salamanders. Ecol Appl 2004, 14(3):692-702.
  • [21]Altwegg R, Wheeler M, Erni B: Climate and the range dynamics of species with imperfect detection. Biol Letters 2008, 4(5):581-584.
  • [22]Weller TJ: Using occupancy estimation to assess the effectiveness of a regional multiple-species conservation plan: Bats in the Pacific Northwest. Biol Cons 2008, 141(9):2279-2289.
  • [23]Aliota MT, Chen CC, Dagoro H, Fuchs JF, Christensen BM: Filarial worms reduce Plasmodium infectivity in mosquitoes. PLoS Negl Trop Dis 2011, 5(2):e963.
  • [24]Zouache K, Michelland RJ, Failloux A-B, Grundmann GL, Mavingui P: Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol 2012, 21(9):2297-2309.
  • [25]Chahar HS, Bharaj P, Dar L, Guleria R, Kabra SK, Broor S: Co-infections with chikungunya virus and dengue virus in Delhi. India Emerg Infect Dis 2009, 15(7):1077-1080.
  • [26]Nakazawa S, Marchand RP, Quang NT, Culleton R, Manh ND, Maeno Y: Anopheles dirus co-infection with human and monkey malaria parasites in Vietnam. Int J Parasitol 2009, 39(14):1533-1537.
  • [27]Cook PE, McGraw EA: Wolbachia pipientis: an expanding bag of tricks to explore for disease control. Trends Parasitol 2010, 26(8):373-375.
  • [28]Eleftherianos I, Atri J, Accetta J, Castillo JC: Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol 2013, 4:46.
  • [29]Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL: A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139(7):1268-1278.
  • [30]Kambris Z, Blagborough AM, Pinto SB, Blagrove MSC, Godfray HCJ, Sinden RE, Sinkins SP: Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae. PLoS Pathog 2010, 6(10):e1001143.
  • [31]Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL: Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 2011, 7(5):e1002043.
  • [32]Hughes GL, Vega-Rodriguez J, Xue P, Rasgon JL: Wolbachia strain wAlbB enhances infection by the rodent malaria parasite Plasmodium berghei in Anopheles gambiae mosquitoes. Appl Environ Microbiol 2012, 78(5):1491-1495.
  • [33]Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z: Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340:748-751.
  • [34]Baton LA, Pacidonio EC, Goncalves DS, Moreira LA: wFlu: Characterization and evaluation of a native Wolbachia from the mosquito Aedes fluviatilis as a potential vector control agent. PLoS One 2013, 8(3):e59619-e59619.
  • [35]Zélé F, Nicot A, Berthomieu A, Weill M, Duron O, Rivero A: Wolbachia increases susceptibility to Plasmodium infection in a natural system. Proc R Soc Lond B Biol Sci 2014, 281(1779):20132837.
  • [36]Duron O, Lagnel J, Raymond M, Bourtzis K, Fort P, Weill M: Transposable element polymorphism of Wolbachia in the mosquito Culex pipiens: evidence of genetic diversity, superinfection and recombination. Mol Ecol 2005, 14(5):1561-1573.
  • [37]Duron O, Raymond M, Weill M: Many compatible Wolbachia strains coexist within natural populations of Culex pipiens mosquito. Heredity 2011, 106(6):986-993.
  • [38]Werren JH, Baldo L, Clark ME: Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008, 6(10):741-751.
  • [39]Duron O, Fort P, Weill M: Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc R Soc Lond B Biol Sci 2006, 273(1585):495-502.
  • [40]Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O: Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 2011, 28(10):2761-2772.
  • [41]Albuquerque CMR, Ham PJ: Concomitant malaria (Plasmodium gallinaceum) and filaria (Brugia pahangi) infections in Aedes aegypti effect on parasite development. Parasitology 1995, 110:1-6.
  • [42]Cancrini G, Scaramozzino P, Gabrielli S, Di Paolo M, Toma L, Romi R: Aedes albopictus and Culex pipiens implicated as natural vectors of Dirofilaria repens in central Italy. J Med Entomol 2007, 44(6):1064-1066.
  • [43]Morchon R, Bargues MD, Latorre JM, Melero-Alcibar R, Pou-Barreto C, Mas-Coma S, Simon F: Haplotype H1 of Culex pipiens implicated as natural vector of Dirofilaria immitis in an endemic area of Western Spain. Vector Borne Zoonotic Dis 2007, 7(4):653-658.
  • [44]Capelli G, di Regalbono AF, Simonato G, Cassini R, Cazzin S, Cancrini G, Otranto D, Pietrobelli M: Risk of canine and human exposure to Dirofilaria immitis infected mosquitoes in endemic areas of Italy. Parasit Vectors 2013, 6:60.
  • [45]Labbe P, Berticat C, Berthomieu A, Unal S, Bernard C, Weill M, Lenormand T: Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens. Plos Genet 2007, 3(11):2190-2199.
  • [46]Labbe P, Sidos N, Raymond M, Lenormand T: Resistance gene replacement in the mosquito Culex pipiens: Fitness estimation from long-term cline series. Genetics 2009, 182(1):303-312.
  • [47]Rivero A, Vézilier J, Weill M, Read AF, Gandon S: Insecticide control of vector-borne diseases: When is insecticide resistance a problem? PLoS Pathog 2010, 6(8):e1001000.
  • [48]McCarroll L, Hemingway J: Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochem Mol Biol 2002, 32(10):1345-1351.
  • [49]McCarroll L, Paton MG, Karunaratne S, Jayasuryia HTR, Kalpage KSP, Hemingway J: Insecticides and mosquito-borne disease. Nature 2000, 407(6807):961-962.
  • [50]Vézilier J, Nicot A, Gandon S, Rivero A: Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum. Malar J 2010, 9:379.
  • [51]Alout H, Ndam NT, Sandeu MM, Djegbe I, Chandre F, Dabire RK, Djogbenou LS, Corbel V, Cohuet A: Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One 2013, 8(5):e63849.
  • [52]Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M: Comparative genomics: Insecticide resistance in mosquito vectors. Nature 2003, 423:136-137.
  • [53]Raymond M, Chevillon C, Guillemaud T, Lenormand T, Pasteur N: An overview of the evolution of overproduced esterases in the mosquito Culex pipiens. Philos Trans R Soc Lond B Biol Sci 1998, 353(1376):1707-1711.
  • [54]L’Ambert G, Ferré J-B, Schaffner F, Fontenille D: Comparison of different trapping methods for surveillance of mosquito vectors of West Nile virus in Rhône Delta. France J Vector Ecol 2012, 37(2):269-275.
  • [55]Schaffner F, Angel G, Geoffroy B, Hervy JP, Rhaeim A, Brunhes J: The mosquitoes of Europe / Les moustiques d’Europe. Paris, France: Programme d’identification et d’enseignement; 2001.
  • [56]Zélé F, Nicot A, Duron O, Rivero A: Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J Evol Biol 2012, 25(7):1243-1252.
  • [57]Waldenstrom J, Bensch S, Hasselquist D, Ostman O: A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 2004, 90(1):191-194.
  • [58]MacKenzie DI: Modeling the probability of resource use: The effect of, and dealing with, detecting a species imperfectly. J Wildl Manage 2006, 70(2):367-374.
  • [59]MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE: Occupancy Estimation and Modeling - Inferring Patterns and Dynamics of Species Occurrence. Burlington, MA: Elsevier Publishing; 2005.
  • [60]Burnham KP, White GC: Evaluation of some random effects methodology applicable to bird ringing data. J Appl Stat 2002, 29(1–4):245-264.
  • [61]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [62]Kim KS, Tsuda Y, Yamada A: Bloodmeal identification and detection of avian malaria parasite from mosquitoes (Diptera: Culicidae) inhabiting coastal areas of Tokyo bay. Japan J Med Entomol 2009, 46(5):1230-1234.
  • [63]Waldenstrom J, Bensch S, Kiboi S, Hasselquist D, Ottosson U: Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 2002, 11(8):1545-1554.
  • [64]Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M: Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 2009, 105(3):629-633.
  • [65]Kim KS, Tsuda Y, Sasaki T, Kobayashi M, Hirota Y: Mosquito blood-meal analysis for avian malaria study in wild bird communities: laboratory verification and application to Culex sasai (Diptera: Culicidae) collected in Tokyo. Japan Parasitol Res 2009, 105(5):1351-1357.
  • [66]Marzal A, Bensch S, Reviriego M, Balbontin J, de Lope F: Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 2008, 21(4):979-987.
  • [67]Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G: Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 2006, 60(2):383-389.
  • [68]Valkiunas G, Atkinson CT, Bensch S, Sehga RNM, Ricklefs RE: Parasite misidentifications in GenBank: how to minimize their number? Trends Parasitol 2008, 24(6):247-248.
  • [69]Perez-Tris J, Hellgren O, Krizanauskiene A, Waldenstrom J, Secondi J, Bonneaud C, Fjeldsa J, Hasselquist D, Bensch S: Within-host speciation of malaria parasites. PLoS One 2007, 2(2):e235.
  • [70]Kimura M, Darbro JM, Harrington LC: Avian malaria parasites share congeneric mosquito vectors. J Parasitol 2010, 96(1):144-151.
  • [71]Perez-Tris J, Bensch S: Dispersal increases local transmission of avian malarial parasites. Ecol Lett 2005, 8(8):838-845.
  • [72]Ejiri H, Sato Y, Sasaki E, Sumiyama D, Tsuda Y, Sawabe K, Matsui S, Horie S, Akatani K, Takagi M, Omori S, Murata K, Yukawa M: Detection of avian Plasmodium spp. DNA sequences from mosquitoes captured in Minami Daito Island of Japan. J Vet Med Sci 2008, 70(11):1205-1210.
  • [73]Cosgrove CL, Wood MJ, Day KP, Sheldon BC: Seasonal variation in Plasmodium prevalence in a population of blue tits Cyanistes caeruleus. J Anim Ecol 2008, 77(3):540-548.
  • [74]Knowles SCL, Wood MJ, Sheldon BC: Context-dependent effects of parental effort on malaria infection in a wild bird population, and their role in reproductive trade-offs. Oecologia 2010, 164(1):87-97.
  • [75]Wood MJ, Cosgrove CL, Wilkin TA, Knowles SCL, Day KP, Sheldon BC: Within-population variation in prevalence and lineage distribution of avian malaria in blue tits. Cyanistes Caeruleus Mol Ecol 2007, 16(15):3263-3273.
  • [76]Bentz S, Rigaud T, Barroca M, Martin-Laurent F, Bru D, Moreau J, Faivre B: Sensitive measure of prevalence and parasitaemia of Haemosporidia from European blackbird (Turdus merula) populations: value of PCR-RFLP and quantitative PCR. Parasitology 2006, 133(6):685-692.
  • [77]Dimitrov D, Zehtindjiev P, Bensch S: Genetic diversity of avian blood parasites in SE Europe: cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol 2010, 55(3):201-209.
  • [78]Escalante AA, Freeland DE, Collins WE, Lal AA: The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci U S A 1998, 95(14):8124-8129.
  • [79]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [80]Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [81]Dumas E, Atyame CM, Milesi P, Fonseca DM, Shaikevich EV, Unal S, Makoundou P, Weill M, Duron O: Population structure of Wolbachia and cytoplasmic introgression in a complex of mosquito species. BMC Evol Biol 2013, 13:181.
  • [82]Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C: A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 2001, 122:93-103.
  • [83]Crawley MJ: The R Book. Chichester, England: John Wiley & Sons, Ltd; 2007.
  • [84]Pollitt LC, Reece SE, Mideo N, Nussey DH, Colegrave N: The problem of auto-correlation in parasitology. PLoS Pathog 2012, 8(4):e1002590.
  • [85]Rasgon JL, Cornel AJ, Scott TW: Evolutionary history of a mosquito endosymbiont revealed through mitochondrial hitchhiking. Proc R Soc Lond B Biol Sci 2006, 273(1594):1603-1611.
  • [86]Fryxell RTT, Nieman CC, Fofana A, Lee Y, Traore SF, Cornel AJ, Luckhart S, Lanzaro GC: Differential Plasmodium falciparum infection of Anopheles gambiae s.s. molecular and chromosomal forms in Mali. Malar J 2012, 11:133.
  • [87]Dhiman S, Bhola RK, Goswami D, Rabha B, Kumar D, Baruah I, Singh L: Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors. Pathog Glob Health 2012, 106(3):177-180.
  • [88]Sinden RE, Carter R, Drakeley C, Leroy D: The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar J 2012, 11:70.
  • [89]Grillo EL, Fithian RC, Cross H, Wallace C, Viverette C, Reilly R, Mayer DCG: Presence of Plasmodium and Haemoproteus in breeding prothonotary warblers (Protonotaria citrea: Parulidae): temporal and spatial trends in infection prevalence. J Parasitol 2012, 98(1):93-102.
  • [90]Gazave E, Chevillon C, Lenormand T, Marquine M, Raymond M: Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 2001, 87(4):441-448.
  • [91]Applegate JE, Beaudoin RL, Seeley DC Jr: The effect of spring relapse in English sparrows on infectivity of malaria to mosquitoes. J Wildl Dis 1971, 7(2):91-92.
  • [92]Chao J, Ball GH: Effect of low temperature on Plasmodium relictum in Culex tarsalis. J Parasitol 1962, 48(2):252.
  • [93]LaPointe DA, Goff ML, Atkinson CT: Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawaï. J Parasitol 2010, 96(2):318-324.
  • [94]Snounou G, Jarra W, Preiser PR: Malaria multigene families: The price of chronicity. Parasitol Today 2000, 16(1):28-30.
  • [95]Valkiūnas G: Avian Malaria Parasites and Other Haemosporidia. Boca Raton, Florida: CRC Press; 2005.
  • [96]van Rooyen J, Lalubin F, Glaizot O, Christe P: Avian haemosporidian persistence and co-infection in great tits at the individual level. Malar J 2013, 12:40.
  • [97]Santiago-Alarcon D, Havelka P, Pineda E, Segelbacher G, Schaefer HM: Urban forests as hubs for novel zoonosis: blood meal analysis, seasonal variation in Culicoides (Diptera: Ceratopogonidae) vectors, and avian haemosporidians. Parasitology 2013, 140(14):1799-1810.
  • [98]Ziegyte R, Bernotiene R, Bukauskaite D, Palinauskas V, Iezhova T, Valkiunas G: Complete sporogony of Plasmodium relictum (lineages pSGS1 and pGRW11) in mosquito Culex pipiens pipiens form molestus, with implications to avian malaria epidemiology. J Parasitol 2014. in press
  • [99]Jansen CC, Webb CE, Graham GC, Craig SB, Zborowski P, Ritchie SA, Russell RC, van den Hurk AF: Blood sources of mosquitoes collected from urban and peri-urban environments in Eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg 2009, 81(5):849-857.
  • [100]Ricklefs RE, Fallon SM, Bermingham E: Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 2004, 53(1):111-119.
  • [101]Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jimenez-Uzcategui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiunas G, Parker PG: Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 2013, 27(6):1366-1377.
  • [102]Hellgren O, Waldenstrom J, Perez-Tris J, Szollosi E, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S: Detecting shifts of transmission areas in avian blood parasites - a phylogenetic approach. Mol Ecol 2007, 16(6):1281-1290.
  • [103]Valkiunas G: Haemosporidian vector research: marriage of molecular and microscopical approaches is essential. Mol Ecol 2011, 20(15):3084-3086.
  • [104]Schneider D, Shahabuddin M: Malaria parasite development in a Drosophila model. Science 2000, 288(5475):2376-2379.
  • [105]Valkiunas G, Kazlauskiene R, Bernotiene R, Palinauskas V, Iezhova TA: Abortive long-lasting sporogony of two Haemoproteus species (Haemosporida, Haemoproteidae) in the mosquito Ochlerotatus cantans, with perspectives on haemosporidian vector research. Parasitol Res 2013, 112(6):2159-2169.
  • [106]Martinsen ES, Perkins SL, Schall JJ: A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogenet Evol 2008, 47(1):261-273.
  • [107]Valkiunas G, Kazlauskiene R, Bernotiene R, Bukauskaite D, Palinauskas V, Iezhova TA: Haemoproteus infections (Haemosporida, Haemoproteidae) kill bird-biting mosquitoes. Parasitol Res 2014, 113(3):1011-1018.
  • [108]Smith DL, McKenzie FE: Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 2004, 3:13.
  • [109]Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB: Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 2014, 4:3932.
  • [110]Czajka C, Becker N, Poppert S, Jost H, Schmidt-Chanasit J, Kruger A: Molecular detection of Setaria tundra (Nematoda: Filarioidea) and an unidentified filarial species in mosquitoes in Germany. Parasit Vectors 2012, 5:14.
  • [111]Kelly-Hope LA, Diggle PJ, Rowlingson BS, Gyapong JO, Kyelem D, Coleman M, Thomson MC, Obsomer V, Lindsay SW, Hemingway J, Molyneux DH: Short communication: negative spatial association between lymphatic filariasis and malaria in West Africa. Trop Med Int Health 2006, 11(2):129-135.
  • [112]Muturi EJ, Mbogo CM, Mwangangi JM, Ng’ang’a ZW, Kabiru EW, Mwandawiro C, Beier JC: Concomitant infections of Plasmodium falciparum and Wuchereria bancrofti on the Kenyan coast. Filaria J 2006, 5:8.
  • [113]Bedin M, Petterino C, Gallo E, Selleri P, Morgante M: Clinical pathological endings in an owl (Athene noctua) with microfilaraemia in Italy. J Vet Med Ser A - Physiol Pathol Clin Med 2007, 54(3):128-130.
  • [114]Acosta I, Hernandez S, Gutierrez PN, Martinez-Cruz MS, Hernandez E, Buffoni L, Javier Martinez-Moreno F: Acuaroid nematodes in the common kestrel (Falco tinnunculus) in the south of Spain. Vet J 2010, 183(2):234-237.
  • [115]Larrat S, Dallaire AD, Lair S: Emaciation and larval filarioid nematode infection in boreal owls (Aegolius funereus). Avian Pathol 2012, 41(4):345-349.
  • [116]Vontas JG, McCarroll L, Karunaratne S, Louis C, Hurd H, Hemingway J: Does environmental stress affect insect-vectored parasite transmission? Physiol Entomol 2004, 29(3):210-213.
  • [117]Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS: Microbial control of malaria: Biological warfare against the parasite and its vector. Acta Trop 2012, 121(2):71-84.
  • [118]Del Giudice P, Schuffenecker I, Vandenbos F, Counillon E, Zeller H: Human West Nile Virus. France Emerg Infect Dis 2004, 10(10):1885-1886.
  • [119]Lenormand T, Bourguet D, Guillemaud T, Raymond M: Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 1999, 400(6747):861-864.
  文献评价指标  
  下载次数:67次 浏览次数:9次