期刊论文详细信息
Respiratory Research
Acrolein exposure suppresses antigen-induced pulmonary inflammation
Albert van der Vliet1  Matthew E Poynter2  Matthew J Randall1  Milena Hristova1  Aida Habibovic1  David Kasahara3  Page C Spiess1 
[1] Department of Pathology, College of Medicine, D205 Given Building, 89 Beaumont Ave, Burlington, VT 05405, USA;Department of Medicine, University of Vermont, Burlington, VT 05405, USA;Department of Environmental Health, Harvard School of Public Health, Boston, MA, 02115, USA
关键词: JNK;    NF-κB;    Nrf2;    COPD;    Asthma;    Inflammation;    Electrophile;    Cigarette smoke;   
Others  :  792572
DOI  :  10.1186/1465-9921-14-107
 received in 2013-05-22, accepted in 2013-10-08,  发布年份 2013
PDF
【 摘 要 】

Background

Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma.

Methods

C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity.

Results

Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein-exposed lungs, associated with increased carbonylation of RelA and JNK.

Conclusion

Acrolein inhalation suppresses Th2-driven allergic inflammation in sensitized animals, due to direct protein alkylation resulting in activation of Nrf2 and anti-inflammatory gene expression, and inhibition of NF-κB or JNK signaling. Our findings help explain the paradoxical anti-inflammatory effects of cigarette smoke exposure in allergic airways disease.

【 授权许可】

   
2013 Spiess et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705032750585.pdf 1009KB PDF download
Figure 8. 61KB Image download
Figure 7. 30KB Image download
Figure 6. 35KB Image download
Figure 5. 119KB Image download
Figure 4. 17KB Image download
Figure 3. 57KB Image download
Figure 2. 35KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Flodin U, Jonsson P, Ziegler J, Axelson O: An epidemiologic study of bronchial asthma and smoking. Epidemiology 1995, 6:503-505.
  • [2]Rahman I, MacNee W: Lung glutathione and oxidative stress: implications in cigarette smoke-induced airway disease. Am J Physiol Lung 1999, 277:L1067-L1088.
  • [3]Arcavi L, Benowitz NL: Cigarette smoking and infection. Arch Intern Med 2004, 164:2206-2216.
  • [4]Sopori M: Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002, 2:372-377.
  • [5]Floreani AA, Rennard SI: The role of cigarette smoke in the pathogenesis of asthma and as a trigger for acute symptoms. Curr Opin Pulm Med 1999, 5:38-46.
  • [6]Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T, Schroeder JM, Vogelmeier C: Suppression of pulmonary innate host defence in smokers. Thorax 2009, 64:144-149.
  • [7]Sethi S, Evans N, Grant BJ, Murphy TF: New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med 2002, 347:465-471.
  • [8]DiFranza JR, Aligne CA, Weitzman M: Prenatal and postnatal environmental tobacco smoke exposure and children’s health. Pediatrics 2004, 113:1007-1015.
  • [9]Gilliland FD, Li YF, Dubeau L, Berhane K, Avol E, McConnell R, Gauderman WJ, Peters JM: Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med 2002, 166:457-463.
  • [10]Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, Von Mutius E: Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax 2004, 59:569-573.
  • [11]Hjern A, Hedberg A, Haglund B, Rosen M: Does tobacco smoke prevent atopic disorders? A study of two generations of Swedish residents. Clin Exp Allergy 2001, 31:908-914.
  • [12]Troisi RJ, Speizer FE, Rosner B, Trichopoulos D, Willett WC: Cigarette smoking and incidence of chronic bronchitis and asthma in women. Chest 1995, 108:1557-1561.
  • [13]Moerloose KB, Pauwels RA, Joos GF: Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am J Respir Crit Care Med 2005, 172:168-172.
  • [14]Rumold R, Jyrala M, Diaz-Sanchez D: Secondhand smoke induces allergic sensitization in mice. J Immunol 2001, 167:4765-4770.
  • [15]Seymour BW, Pinkerton KE, Friebertshauser KE, Coffman RL, Gershwin LJ: Second-hand smoke is an adjuvant for T helper-2 responses in a murine model of allergy. J Immunol 1997, 159:6169-6175.
  • [16]Melgert BN, Postma DS, Geerlings M, Luinge MA, Klok PA, van der Strate BW, Kerstjens HA, Timens W, Hylkema MN: Short-term smoke exposure attenuates ovalbumin-induced airway inflammation in allergic mice. Am J Respir Cell Mol Biol 2004, 30:880-885.
  • [17]Robbins CS, Pouladi MA, Fattouh R, Dawe DE, Vujicic N, Richards CD, Jordana M, Inman MD, Stampfli MR: Mainstream cigarette smoke exposure attenuates airway immune inflammatory responses to surrogate and common environmental allergens in mice, despite evidence of increased systemic sensitization. J Immunol 2005, 175:2834-2842.
  • [18]Thatcher TH, Benson RP, Phipps RP, Sime PJ: High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. Am J Physiol Lung Cell Mol Physiol 2008, 295:L412-L421.
  • [19]Trimble NJ, Botelho FM, Bauer CM, Fattouh R, Stampfli MR: Adjuvant and anti-inflammatory properties of cigarette smoke in murine allergic airway inflammation. Am J Respir Cell Mol Biol 2009, 40:38-46.
  • [20]Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Holmes M, Jersmann H, Reynolds PN: Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 2011, 44:673-681.
  • [21]Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R: Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. J Immunol 2008, 181:1536-1547.
  • [22]Reddy S, Finkelstein EI, Wong PS-Y, Phyng A, Cross CE, van der Vliet A: Indentification of glutathione modifications by cigarette smoke. Free Radic Biol Med 2002, 33:1490-1498.
  • [23]Esterbauer H, Schaur RJ, Zollner H: Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991, 11:81-128.
  • [24]Muller T, Gebel S: The cellular stress response induced by aqueous extracts of cigarette smoke is critically dependent on the intracellular glutathione concentration. Carcinogenesis 1998, 19:797-801.
  • [25]Andreoli R, Manini P, Corradi M, Mutti A, Niessen WM: Determination of patterns of biologically relevant aldehydes in exhaled breath condensate of healthy subjects by liquid chromatography/atmospheric chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2003, 17:637-645.
  • [26]Annovazzi L, Cattaneo V, Viglio S, Perani E, Zanone C, Rota C, Pecora F, Cetta G, Silvestri M, Iadarola P: High-performance liquid chromatography and capillary electrophoresis: methodological challenges for the determination of biologically relevant low-aliphatic aldehydes in human saliva. Electrophoresis 2004, 25:1255-1263.
  • [27]Kilburn KH, McKenzie WN: Leukocyte recruitment to airways by aldehyde-carbon combinations that mimic cigarette smoke. Lab Invest 1978, 38:134-142.
  • [28]Leach CL, Hatoum NS, Ratajczak HV, Gerhart JM: The pathologic and immunologic effects of inhaled acrolein in rats. Toxicol Lett 1987, 39:189-198.
  • [29]Li L, Holian A: Acrolein: a respiratory toxin that suppresses pulmonary host defense. Rev Environ Health 1998, 13:99-108.
  • [30]Kirkham PA, Spooner G, Rahman I, Rossi AG: Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 2004, 318:32-37.
  • [31]Lambert C, McCue J, Portas M, Ouyang Y, Li J, Rosano TG, Lazis A, Freed BM: Acrolein in cigarette smoke inhibits T-cell responses. J Allergy Clin Immunol 2005, 116:916-922.
  • [32]Kehrer JP, Biswal SS: The molecular effects of acrolein. Toxicol Sci 2000, 57:6-15.
  • [33]Horton ND, Biswal SS, Corrigan LL, Bratta J, Kehrer JP: Acrolein causes inhibitor kappaB-independent decreases in nuclear factor kappaB activation in human lung adenocarcinoma (A549) cells. J Biol Chem 1999, 274:9200-9206.
  • [34]Lambert C, Li J, Jonscher K, Yang T-C, Reigan P, Quintana M, Harvey J, Freed BM: Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-κB1 DNA binding domain. J Biol Chem 2007, 282:19666-19675.
  • [35]Valacchi G, Pagnin E, Phung A, Nardini M, Schock BC, Cross CE, van der Vliet A: Inhibition of NFkappaB activation and IL-8 expression in human bronchial epithelial cells by acrolein. Antioxid Redox Signal 2005, 7:25-31.
  • [36]Kasahara DI, Poynter ME, Othman Z, Hemenway D, van der Vliet A: Acrolein inhalation suppresses lipopolysaccharide-induced inflammatory cytokine production but does not affect acute airways neutrophilia. J Immunol 2008, 181:736-745.
  • [37]Hristova M, Spiess PC, Kasahara DI, Randall MJ, Deng B, van der Vliet A: The tobacco smoke component, acrolein, suppresses innate macrophage responses by direct alkylation of c-Jun N-terminal kinase. Am J Respir Cell Mol Biol 2012, 46:23-33.
  • [38]Na HK, Surh YJ: Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 2006, 45:368-380.
  • [39]Hybertson BM, Gao B, Bose SK, McCord JM: Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 2011, 32:234-246.
  • [40]Leikauf GD: Hazardous air pollutants and asthma. Environ Health Perspect 2002, 110(Suppl 4):505-526.
  • [41]Bein K, Leikauf GD: Acrolein - a pulmonary hazard. Mol Nutr Food Res 2011, 55:1342-1360.
  • [42]Bevelander M, Mayette J, Whittaker LA, Paveglio SA, Jones CC, Robbins J, Hemenway D, Akira S, Uematsu S, Poynter ME: Nitrogen dioxide promotes allergic sensitization to inhaled antigen. J Immunol 2007, 179:3680-3688.
  • [43]Wheelock AM, Zhang L, Tran M-U, Morin D, Penn S, Buckpitt AR, Plopper CG: Isolation of rodent airway epithelial cell proteins facilitates in vivo proteomics studies of lung toxicity. Am J Physiol Lung Cell Mol Physiol 2004, 286:L399-L410.
  • [44]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [45]Finkelstein EI, Ruben J, Koot CW, Hristova M, van der Vliet A: Regulation of constitutive neutrophil apoptosis by the α, β-unsaturated aldehydes acrolein and 4-hydroxynonenal. Am J Physiol Lung Cell Mol Physiol 2005, 289:L1019-L1028.
  • [46]Spiess PC, Deng B, Hondal RJ, Matthews DE, van der Vliet A: Proteomic profiling of acrolein adducts in human lung epithelial cells. J Proteomics 2011, 74:2380-2394.
  • [47]Cho HY, Reddy SP, Kleeberger SR: Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 2006, 8:76-87.
  • [48]Lu SC: Regulation of glutathione synthesis. Mol Aspects Med 2009, 30:42-59.
  • [49]McMahon M, Lamont DJ, Beattie KA, Hayes JD: Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A 2010, 107:18838-18843.
  • [50]Manzel LJ, Shi L, O’Shaughnessy PT, Thorne PS, Look DC: Inhibition by cigarette smoke of nuclear factor-kappaB-dependent response to bacteria in the airway. Am J Respir Cell Mol Biol 2011, 44:155-165.
  • [51]Li L, Hamilton RF Jr, Holian A: Effect of acrolein on human alveolar macrophage NF-kappaB activity. Am J Physiol 1999, 277:L550-L557.
  • [52]Hristova M, Heuvelmans S, van der Vliet A: GSH-dependent regulation of Fas-mediated caspase-8 activation by acrolein. FEBS Lett 2007, 581:361-367.
  • [53]Polosa R, Knoke JD, Russo C, Piccillo G, Caponnetto P, Sarva M, Proietti L, Al-Delaimy WK: Cigarette smoking is associated with a greater risk of incident asthma in allergic rhinitis. J Allergy Clin Immunol 2008, 121:1428-1434.
  • [54]Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC: Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 2002, 57:226-230.
  • [55]Kerstjens HA, Overbeek SE, Schouten JP, Brand PL, Postma DS: Airways hyperresponsiveness, bronchodilator response, allergy and smoking predict improvement in FEV1 during long-term inhaled corticosteroid treatment. Dutch CNSLD Study Group. Eur Respir J 1993, 6:868-876.
  • [56]Moretto N, Volpi G, Pastore F, Facchinetti F: Acrolein effects in pulmonary cells: relevance to chronic obstructive pulmonary disease. Ann N Y Acad Sci 2012, 1259:39-46.
  • [57]Leikauf GD, Leming LM, O’Donnell JR, Doupnik CA: Bronchial responsiveness and inflammation in guinea pigs exposed to acrolein. J Appl Physiol 1989, 66:171-178.
  • [58]Borchers MT, Wert SE, Leikauf GD: Acrolein-induced MUC5ac expression in rat airways. Am J Physiol Lung Cell Mol Physiol 1998, 18:L573-L581.
  • [59]Borchers MT, Wesselkamper S, Wert SE, Shapiro SD, Leikauf GD: Monocyte inflammation augments acrolein-induced Muc5ac expression in mouse lung. Am J Physiol Lung Cell Mol Physiol 1999, 277:L489-L497.
  • [60]Hizume DC, Toledo AC, Moriya HT, Saraiva-Romanholo BM, Almeida FM, Arantes-Costa FM, Vieira RP, Dolhnikoff M, Kasahara DI, Martins MA: Cigarette smoke dissociates inflammation and lung remodeling in OVA-sensitized and challenged mice. Respir Physiol Neurobiol 2012, 181:167-176.
  • [61]Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S: Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 2005, 202:47-59.
  • [62]Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S: Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 2004, 114:1248-1259.
  • [63]Fitzpatrick AM, Stephenson ST, Hadley GR, Burwell L, Penugonda M, Simon DM, Hansen J, Jones DP, Brown LA: Thiol redox disturbances in children with severe asthma are associated with posttranslational modification of the transcription factor nuclear factor (erythroid-derived 2)-like 2. J Allergy Clin Immunol 2011, 127:1604-1611.
  • [64]Malhotra D, Thimmulappa R, Navas-Acien A, Sandford A, Elliott M, Singh A, Chen L, Zhuang X, Hogg J, Pare P, et al.: Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008, 178:592-604.
  • [65]Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, Kondo S, Nishimura M: Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2008, 39:673-682.
  • [66]Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM: Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 2012, 442:453-464.
  • [67]Poynter ME, Cloots R, Van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM: NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness. J Immunol 2004, 173:7003-7009.
  • [68]Poynter ME, Irvin CG, Janssen-Heininger YM: Rapid activation of nuclear factor-kappaB in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 2002, 160:1325-1334.
  • [69]Janssen-Heininger YM, Poynter ME, Aesif SW, Pantano C, Ather JL, Reynaert NL, Ckless K, Anathy V, van der Velden J, Irvin CG, van der Vliet A: Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc 2009, 6:249-255.
  • [70]Davis RJ: Signal transduction by the JNK group of MAP kinases. Cell 2000, 103:239-252.
  • [71]Shaulian E, Karin M: AP-1 in cell proliferation and survival. Oncogene 2001, 20:2390-2400.
  • [72]Warholm M, Holmberg B, Hogberg J, Kronevi T, Gotharson A: The acute effects of single and repeated injections of acrolein and other aldehydes. Int J Tissue React 1984, 6:61-70.
  • [73]Herxheimer H: Atropine cigarettes in asthma and emphysema. Br Med J 1959, 2:167-171.
  • [74]Tamer L, Calikoglu M, Ates NA, Yildirim H, Ercan B, Saritas E, Unlu A, Atik U: Glutathione-S-transferase gene polymorphisms (GSTT1, GSTM1, GSTP1) as increased risk factors for asthma. Respirology 2004, 9:493-498.
  文献评价指标  
  下载次数:77次 浏览次数:16次